Skip to main content
Log in

Profile of the 9.85-GHz Neutral Hydrogen Line Taking into Account the Zeeman Effect (Computations and Solar Observations)

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The 9.85-GHz (3.04 cm) line of atomic hydrogen due to the 22P3/2–22S1/2 transition between levels of the hyperfine structure occupies a special place in the complex spectrum of the Sun. This is essentially the only hydrogen line that is expected in the solar radio spectrum. The promising nature of solar observations in the H3.04 line was first noted in 1952 by Wild, who calculated the line profile using a model for the “quiet” Sun characterized by a weak magnetic field (several Gauss). Computations of this line profile taking into account the strong magnetic fields in solar active regions (hundreds Gauss) are considered here. It is shown that the Zeeman effect leads to appreciable changes in the appearance of the line profile. This may help explain why searches for the H3.04 line have not led to any detections earlier. New observations of the Sun on the RATAN-600 telescope are analyzed with allowance for the Zeeman effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Wild, Astrophys. J. 115, 206 (1952).

    Article  ADS  Google Scholar 

  2. A. Zelenka, Solar Phys. 58, 17 (1978).

    Article  ADS  Google Scholar 

  3. C. De Jager, in Paris Symposium on Radio Astronomy, Ed. by R. N. Bracewell (Stanford Univ. Press, Stanford, 1959), p. 96.

    Google Scholar 

  4. A. F. Dravskikh, Izv. GAO 164, 128 (1960).

    Google Scholar 

  5. A. F. Dravskikh, Izv. GAO 172, 40 (1964).

    Google Scholar 

  6. A. F. Dravskikh and Z. V. Dravskikh, Preprint SAO AN SSSR No. 42L (SAO RAN, Zelenchuk, 1987).

    Google Scholar 

  7. A. F. Dravskikh and Z. V. Dravskikh, Sov. Astron. 32, 104 (1988).

    ADS  Google Scholar 

  8. V. M. Bogod, A. M. Alesin, and A. A. Pervakov, Astrophys. Bull. 66, 205 (2011).

    Article  ADS  Google Scholar 

  9. N. A. Topchilo, N. G. Peterova, and T. P. Borisevich, Astron. Rep. 54, 69 (2010).

    Article  ADS  Google Scholar 

  10. V. M. Bogod and L. V. Yasnov, Solar Phys. 291, 3317 (2016).

    Article  ADS  Google Scholar 

  11. C. Alissandrakis, V. Bogod, T. Kaltman, and N. Peterova, in Proceedings of the CESRA 2016: Solar Radio Physics from the Chromosphere to Near Earth, WG 3: Fine Structures and Radio Wave Propagation, June 13–17, 2016, Orléans, France.

    Google Scholar 

  12. S. E. Frish, Optical Spectra of Atoms (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  13. T. J. Okamoto and T. Sakurai, Astrophys. J. Lett. 852, L16 (2018).

    Google Scholar 

  14. B. P. Filippov and O. E. Den, Astron. Rep. 62, 359 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. G. Peterova or N. A. Topchilo.

Additional information

Russian Text © A.F. Dravskikh, N.G. Peterova, N.A. Topchilo, 2019, published in Astronomicheskii Zhurnal, 2019, Vol. 96, No. 3, pp. 246–254.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dravskikh, A.F., Peterova, N.G. & Topchilo, N.A. Profile of the 9.85-GHz Neutral Hydrogen Line Taking into Account the Zeeman Effect (Computations and Solar Observations). Astron. Rep. 63, 229–237 (2019). https://doi.org/10.1134/S1063772919030028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772919030028

Navigation