Skip to main content
Log in

Method for Estimating the Doppler Factors of Relativistic Radio Jets

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

An expression for the intensity of synchrotron emission from a radio source (in the optically thin regime) in terms of the energy densities in the magnetic field and particles is obtained, based on a definition of a relativistic electron related to its rest energy. A relationship is obtained between the energy densities in particles Ee and the magnetic field EH for a physical system containing a magnetic field and relativistic electrons in a minimum-energy state. A method for estimating the Doppler factors of the relativistic electrons has been developed. This method does not requires that all radio sources have the same radiation energies (brightness temperatures): it is sufficient that the energies of the magnetic fields and relativistic particles in the source be approximately equal. The method yields Doppler-factor estimates with reasonably good accuracy, even when there are modest deviations from energy equipartition in the radio source,making it applicable to many radio sources. The method is used to estimate the Doppler factor of the radio jet in CTA 21.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Artyukh, Astrophysics 59, 514 (2016).

    Article  ADS  Google Scholar 

  2. M. J. Rees, Nature 211, 468 (1966).

    Article  ADS  Google Scholar 

  3. G. Ghisellini, P. Padovani, A. Celotti, and L. Maraschi, Astrophys. J. 407, 65 (1993).

    Article  ADS  Google Scholar 

  4. A. C. S. Readhead, Astrophys. J. 426, 51 (1994).

    Article  ADS  Google Scholar 

  5. I. I. Kellermann and I. I. K. Pauliny-Toth, Astrophys. J. 155, L71 (1969).

    Google Scholar 

  6. A. Lahteenmaki, E. Valtaoja, and K. Wiik, Astrophys. J. 511, 112 (1999).

    Article  ADS  Google Scholar 

  7. A. Lahteenmaki and E. Valtaoja, Astrophys. J. 521, 493 (1999).

    Article  ADS  Google Scholar 

  8. T. Savolainen, D. C. Homan, T. Hovatta, et al., Astron. Astrophys. 512, 24 (2010).

    Article  Google Scholar 

  9. Yu. I. Ovsepyan, Phys. Usp. 41, 941 (1998).

    Article  ADS  Google Scholar 

  10. M. McGillchrist, J. E. Baldwin, J. M. Riley, et al., Mon. Not. R. Astron. Soc. 246, 110 (1990).

    ADS  Google Scholar 

  11. A. G. Pacholczyk, Radio Astrophysics: Nonthermal Processes in Galactic and Extragalactic Sources, A Series of Books in Astronomy and Astrophysics (W. H. Freeman, New York, 1970; Mir,Moscow, 1973).

    Google Scholar 

  12. G. R. Burbidge and E. M. Burbidge, Astrophys. J. 125, 1 (1957).

    Article  ADS  Google Scholar 

  13. V. L. Ginzburg and S. I. Syrovatskii, The Origin of Cosmic Rays (Akad. Nauk SSSR, Moscow, 1963; Pergamon, London, New York, 1964).

    Google Scholar 

  14. V. S. Artyukh and P. A. Chernikov, Astron. Rep. 50, 194 (2006).

    Article  ADS  Google Scholar 

  15. V. S. Artyukh and V. S. Nedora, Astrophysics 60, 337 (2017).

    Article  Google Scholar 

  16. M. Perucho and J. M. Marti, Astrophys. J. 568, 639 (2002).

    Article  ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

    Google Scholar 

  18. V. G. Levich, Course of Theoretical Physics (Fizmatgiz, Moscow, 1962), Vol. 1 [in Russian].

    Google Scholar 

  19. G. Rybicki and A. Lightman, Radiative Processes in Astrophysics (Wiley, New York, 1979).

    Google Scholar 

  20. V. S. Artyukh, Astron. Rep. 62, 436 (2018).

    Article  ADS  Google Scholar 

  21. A. P. Marscher, Astrophys. J. 264, 296 (1983).

    Article  ADS  Google Scholar 

  22. K. R. Lind and R. D. Blandford, Astrophys. J. 295, 358 (1985).

    Article  ADS  Google Scholar 

  23. V. S. Artyukh, Tr. Fiz. Inst. Lebedeva189, 223 (1988).

    Google Scholar 

  24. A. Labiano, P. D. Barthel, C. P. O’Dea, et al., Astron. Astrophys. 463, 97 (2007).

    Article  ADS  Google Scholar 

  25. V. S. Artyukh, S. A. Tyul’bashev, and P. A. Chernikov, Astron. Rep. 43, 1 (1999).

    ADS  Google Scholar 

  26. D. L. Jones, Astrophys. J. 276, L5 (1984).

    Google Scholar 

  27. V. S. Artyukh, S. A. Tyul’bashev, and P. A. Chernikov, Astron. Rep. 57, 483 (2013).

    Article  Google Scholar 

  28. S. A. Tyul’bashev, Astron. Astrophys. Trans. 26, 663 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Artyukh.

Additional information

Russian Text © V.S. Artyukh, 2019, published in Astronomicheskii Zhurnal, 2019, Vol. 96, No. 3, pp. 179–186.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artyukh, V.S. Method for Estimating the Doppler Factors of Relativistic Radio Jets. Astron. Rep. 63, 167–173 (2019). https://doi.org/10.1134/S1063772919030016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772919030016

Navigation