Skip to main content
Log in

The Role of Gravitational Radiation in the Evolution of Stars and Galaxies

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The conditions for the formation of close binaries containing main-sequence stars, degenerate dwarfs of various types, neutron stars, and black holes of various masses are considered. The paper investigates the evolution of the closest binary systems under the influence of their gravitational-wave radiation. The conditions under which the binary components can merge on a time scale shorter than the Hubble time as a result of their emission of gravitational waves are estimated. A self-consistent scenario model is used to estimate the frequency of such events in the Galaxy, their observable manifestations, the nature of the merger products, and the role of these events in the evolution of stars and galaxies. The conditions for the formation and evolution of supermassive binary black holes during collisions andmergers of galaxies in their dense clusters are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Sitzungsber. Preuss., Akad. Wiss., Bd. 1, 42 (1918).

    Google Scholar 

  2. I. Iben, Jr. and A. Tutukov, Astrophys. J. 284, 719 (2003).

    Article  ADS  Google Scholar 

  3. J. Taylor and R. Hulse, IAU Circ., No. 270 (1974).

    Google Scholar 

  4. B. Abbott, R. Abbott, T. Abbott, M. R. Abernathy, et al., Phys. Rev. Lett. 116, 241102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Masevich and A. Tutukov Stellar Evolution: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  6. I. Iben, Jr., Stellar Evolution Physics (Cambridge Univ. Press, Cambridge, 2012).

    Book  Google Scholar 

  7. A. Cherepashchuk, Close Binary Stars (Fizmatlit, Moscow, 2015) [in Russian].

    MATH  Google Scholar 

  8. M. Colpi, V. Gorini, F. Haardt and U. Moschelle, Joint Evolution of Black Holes and Galaxies (CRC, Boca Raton, FL, 2006).

    Book  Google Scholar 

  9. A. Tutukov, Astron. Rep. 49, 13 (2005).

    Article  ADS  Google Scholar 

  10. R. Kraft, Astrophys. J. 150, 551 (1962).

    Article  ADS  Google Scholar 

  11. B. Paczynski, Acta Astron. 17, 287 (1967).

    ADS  Google Scholar 

  12. A. Tutukov, Nauch. Inform. 11, 62 (1969).

    ADS  Google Scholar 

  13. L. Landau and E. Livshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1962; Pergamon, Oxford, 1975).

    Google Scholar 

  14. Q. Nguen-Luong, H. Nguen, F. Motte, et al., Astrophys. J. 833, 23 (2016).

    Article  ADS  Google Scholar 

  15. R. Larson, Mon. Not. R. Astron. Soc. 194, 809 (1981).

    Article  ADS  Google Scholar 

  16. A. Aráujo de Souza, L. Martins, A. Rodrìguez-Ardila, and L. Fraga, Astron. J. 155, 234 (2018).

    Article  ADS  Google Scholar 

  17. K. Bolejko and J. Ostrowski, astro-ph/1805. 11047.

  18. B. Shustov and A. Tutukov, Astron. Rep., in press.

  19. B. Paczynski, IAU Symp. 73, 75 (1976).

    ADS  Google Scholar 

  20. A. Tutukov and L. Yungelson, Acta Astron. 29, 665 (1979).

    ADS  Google Scholar 

  21. A. Tutukov, Astron. Rep. 50, 439 (2006).

    Article  ADS  Google Scholar 

  22. U. Peretz, M. Orio, E. Behar, et al., Astrophys. J. 829, 2 (2016).

    Article  ADS  Google Scholar 

  23. P. Gil-Pons, E. Garcia-Berro, J. Jose, et al., Astron. Astrophys. 407, 1021 (2003).

    Article  ADS  Google Scholar 

  24. A. Tutukov and L. Yungelson, Astrophysics 8, 227 (1972).

    Article  ADS  Google Scholar 

  25. A. Reines and M. Volonteri, Astrophys. J. 813, 2882 (2015).

    Article  Google Scholar 

  26. A. Tutukov and A. Fedorova, Astron. Rep. 61, 663 (2017).

    Article  ADS  Google Scholar 

  27. S. Mattila, M. Perez-Torres, A. Efstathiou, P. Mimica, et al., Science (Washington, DC, U. S. ) 361, 482 (2018).

    ADS  Google Scholar 

  28. I. Iben, Jr. and A. Tutukov, Astrophys. J. 313, 727 (1987).

    Article  ADS  Google Scholar 

  29. I. Iben, Jr. and A. Tutukov, Astrophys. J. 370, 615 (1991).

    Article  ADS  Google Scholar 

  30. A. Bogomazov and A. Tutukov, Astron. Rep. 53, 214 (2009).

    Article  ADS  Google Scholar 

  31. A. Riess, A. Filippenko, P. Challiss, et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  32. A. Tutukov and L. Yungelson, Mon. Not. R. Astron. Soc. 268, 871 (1994).

    Article  ADS  Google Scholar 

  33. I. Iben, Jr. and A. Tutukov, Astrophys. J. Suppl. 54, 335 (1984).

    Article  ADS  Google Scholar 

  34. A. Tutukov and L. Yungelson, Astron. Rep. 46, 667 (2002).

    Article  ADS  Google Scholar 

  35. A. Tutukov and L. Yungel’son, Nauch. Inform. 27, 70 (1973).

    ADS  Google Scholar 

  36. A. Tutukov, Astron. Rep. 47, 637 (2003).

    Article  ADS  Google Scholar 

  37. T. Yasuda, Y. Urata, J. Enomoto, and M. S. Tashiro, Mon. Not. R. Astron. Soc. 466, 4558 (2017).

    Article  ADS  Google Scholar 

  38. S. Kisaka, K. Ioka, and T. Sakamoto, Astrophys. J. 846, 142 (2017).

    Article  ADS  Google Scholar 

  39. R.-J. Lu, S.-S. Du, J.-G. Cheng, H.-J. Lü, H.-M. Zhang, L. Lan, and E.-W. Liang, astroph/1710. 06979.

  40. B. Abbott, R. Abbott, T. Abbott, et al., Astrophys. J. Lett. 818, 22 (2016).

    Article  ADS  Google Scholar 

  41. B.-B. Zhang, B. Zhang, H. Sun, W.-H. Lei, et al., Nat. Commun. 9, 447 (2018).

    Article  ADS  Google Scholar 

  42. A. Tutukov and A. Cherepashchuk, Astron. Rep. 48, 39 (2004).

    Article  ADS  Google Scholar 

  43. B. Margalit and B. Metzger, Mon. Not. R. Astron. Soc. 465, 2790 (2017).

    Article  ADS  Google Scholar 

  44. L. Barack, V. Cardoso, S. Nissanke, Th. P. Sotiriou, et al., astro-ph/1806. 05195.

  45. S. Taylor and D. Gerosa, astro-ph/1806. 08365.

  46. K. Ioka, T. Matsumo, Y. Teraki, et al., Mon. Not. R. Astron. Soc. 470, 3332 (2017).

    Article  ADS  Google Scholar 

  47. R. J. Foley, S. L. Hoffmann, L. M. Macri, A. G. Riess, P. J. Brown, A. V. Filippenko, M. L. Graham, and P. A. Milne, astro-ph/1806. 08359.

  48. J. Gallagher, D. Hunter, and A. Tutukov, Astrophys. J. 284, 544 (1984).

    Article  ADS  Google Scholar 

  49. C. Firmani and A. Tutukov, Astron. Astrophys. 364, 37 (1992).

    ADS  Google Scholar 

  50. M. Du, V. P. Debattista, J. Shen, L. C. Ho, and P. Erwin, Astrophys. J. Lett. 844, L15 (2017).

  51. A. Tutukov, Astron. Rep. 49, 13 (2005).

    Article  ADS  Google Scholar 

  52. Y. Shirasaki, M. Akiyama, T. Nagao, Y. Toba, et al., Publ. Astron. Soc. Jpn. 70, S30 (2018).

    Google Scholar 

  53. T. Liu, Y. Lin, S. Hou, et al., Astrophys. J. 806, 58 (2015).

    Article  ADS  Google Scholar 

  54. A. Janiuk, Y. Yuan, Y. Perna, and T. di Matteo, Nuovo Cimento C 28, 419 (2005).

    ADS  Google Scholar 

  55. D. Burnstein, R. Bender, S. Faber, et al., Astron. J. 114, 1365 (1997).

    Article  ADS  Google Scholar 

  56. X. Zhu, W. Cui, and E. Thrane, astro-ph/1806. 02346.

  57. M. Charisi, I. Bartos, Z. Haiman, et al., Mon. Not. R. Astron. Soc. 463, 2145 (2016).

    Article  ADS  Google Scholar 

  58. Ch. Skipper and I. Brown, Mon. Not. R. Astron. Soc. 475, 5179 (2018).

    Article  ADS  Google Scholar 

  59. A. Tutukov, V. Dryomov, and G. Dryomova, Astron. Rep. 51, 435 (2007).

    Article  ADS  Google Scholar 

  60. V. Vshivkov, G. Lazareva, I. Kulikov, et al., Astrophys. J. Suppl. 194, 47 (2011).

    Article  ADS  Google Scholar 

  61. V. Strazzullo, E. Daddi, R. Gobat, F. Valentino, et al., Astrophys. J. Lett. 833, L20 (2016).

    Google Scholar 

  62. H. Loose, E. Kruegel, and A. Tutukov, Astron. Astrophys. 105, 342 (1982).

    ADS  Google Scholar 

  63. I. Karachentsev, E. Kaisina, and D. Makarov, Astrophys. J. 833, 20 (2016).

    Article  Google Scholar 

  64. G. Dryomova, A. Tutukov, and V. Dryomov, Astron. Rep. 54, 704 (2010).

    Article  ADS  Google Scholar 

  65. D. Rafferty, B. McNamara, P. Nulsen, et al., Astrophys. J. 652, 216 (2006).

    Article  ADS  Google Scholar 

  66. V. Marian, B, Ziegler, U. Kuchner, and M. Verdugo, Astron. Astrophys. 617, A34 (2018).

    Google Scholar 

  67. A. Tutukov and A. Cherepashchuk, Astron. Rep. 61, 833 (2017).

    Article  ADS  Google Scholar 

  68. B. Pampliega, P. Perez-Gonzalez, G. Barro, et al., astro-ph/1806. 04152.

  69. D. D’Orazio, A. Loeb, and J. Guillochon, astroph/1807. 00029.

  70. T. Buck, M. Ness, A. Obreja, A. V. Macciò, and A. A. Dutton, astro-ph/1807. 00829.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tutukov.

Additional information

Russian Text © A. V. Tutukov, 2019, published in Astronomicheskii Zhurnal, 2019, Vol. 96, No. 2, pp. 91–105.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutukov, A.V. The Role of Gravitational Radiation in the Evolution of Stars and Galaxies. Astron. Rep. 63, 79–93 (2019). https://doi.org/10.1134/S1063772919020082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772919020082

Navigation