Skip to main content
Log in

Masses of RR Lyrae Stars with Different Chemical Abundances in the Galactic Field

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The surface gravities and effective temperatures have been added to a compilative catalog published earlier, which includes the relative abundances of several chemical elements for 100 field RR Lyrae stars. These atmoshperic parameters and evolutionary tracks from the Dartmouth database are used to determine the masses of the stars and perform a comparative analysis of the properties of RR Lyrae stars with different chemical compositions. The masses of metal-rich ([Fe/H] > −0.5) RR Lyrae stars with thin disk kinematics are in the range (0.51−0.60)M. Only stars with initial masses exceeding 1M can reach the horizontal branch during the lifetime of this subsystem. To become an RR Lyrae variable, a star must have lost approximately half of its mass during the red-giant phase. The appearance of such young, metal-rich RR Lyrae stars is possibly due to high initial helium abundances of their progenitors. According to the Dartmouth evolutionary tracks for Y = 0.4, a star with an initial mass as low as 0.8 M could evolve to become an RR Lyrae variable during this time. Such stars should have lost (0.2−0.3)M in the red-giant phase, which seems quite realistic. Populations of red giants and RR Lyrae stars with such high helium abundances have already been discovered in the bulge; some of these could easily be transported to the solar neighborhood as a consequence of perturbations due to inhomogeneities of the Galaxy’s gravitational potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Marsakov, M. L. Gozha, and V. V. Koval’, Astron. Rep. 62, 50 (2018).

    Article  ADS  Google Scholar 

  2. M. L. Gozha, V. A. Marsakov, and V. V. Koval’, Astrophysics 61, 41 (2018).

    Article  ADS  Google Scholar 

  3. V. A. Marsakov, M. L. Gozha, V. V. Koval’, and E. I. Vorobyov, Astrophysics 61, 171 (2018).

    Article  ADS  Google Scholar 

  4. M. Marconi, G. Coppola, G. Bono, V. Braga, et al., Astrophys. J. 808, 50 (2015).

    Article  ADS  Google Scholar 

  5. B. V. Kukarkin, Study of the Structure and Development of Stellar Systems Based on Studies of Variable Stars (Gos. Izdat. Tekh.-Teor. Liter., Moscow, Leningrad, 1949) [in Russian].

    Google Scholar 

  6. R. E. Taam, R. P. Kraft, and N. Suntzeff, Astrophys. J. 207, 201 (1976).

    Article  ADS  Google Scholar 

  7. M. Chadid, C. Sneden, and G. W. Preston, Astrophys. J. 835, 187 (2017).

    Article  ADS  Google Scholar 

  8. S. M. Andrievsky, V. V. Kovtyukh, G. Wallerstein, S. A. Korotin, and W. Huang, Publ. Astron. Soc. Pacif. 122, 877 (2010).

    Article  ADS  Google Scholar 

  9. D. L. Lambert, J. E. Heath, M. Lemke, and J. Drake, Astrophys. J. Suppl. 103, 183 (1996).

    Article  ADS  Google Scholar 

  10. S. Liu, G. Zhao, Y.-Q. Chen, Y. Takeda, and S. Honda, Res. Astron. Astrophys. 13, 1307 (2013).

    Article  ADS  Google Scholar 

  11. A. K. Dambis, L. N. Berdnikov, A. Y. Kniazev, V. V. Kravtsov, A. S. Rastorguev, R. Sefako, and O. V. Vozyakova, Mon. Not. R. Astron. Soc. 435, 3206 (2013).

    Article  ADS  Google Scholar 

  12. A. Dotter, B. Chaboyer, D. Jevremovic, V. Kostov, E. Baron, and J. W. Fergusonet, Astrophys. J. Suppl. 178, 89 (2008). http://stellar. dartmouth. edu/models/index. html

    Article  ADS  Google Scholar 

  13. T. Bensby, S. Feldzing, and I. Lungstrem, Astron. Astrophys. 410, 527 (2003).

    Article  ADS  Google Scholar 

  14. T. V. Borkova and V. A. Marsakov, Astron. Rep. 44, 665 (2000).

    Article  ADS  Google Scholar 

  15. V. A. Marsakov and T. V. Borkova, Astron. Lett. 31, 515 (2005).

    Article  ADS  Google Scholar 

  16. V. A. Marsakov and T. V. Borkova, Astron. Lett. 32, 376 (2006).

    Article  ADS  Google Scholar 

  17. R. Schonrich and J. Binney, Mon. Not. R. Astron. Soc. 396, 203 (2009).

    Article  ADS  Google Scholar 

  18. X. Fu, A. Bressan, P. Marigo, L. Girardi, J. Montalban, Y. Chen, and A. Nanni, Mon. Not. R. Astron. Soc. 476, 496 (2018).

    Article  ADS  Google Scholar 

  19. M. Marconi and D. Minniti, Astrophys. J. 853, 20 (2018).

    Article  ADS  Google Scholar 

  20. P. Pietrukowicz, S. Kozowski, J. Skowron, I. Soszynski, et al., Astrophys. J. 811, 113 (2015).

    Article  ADS  Google Scholar 

  21. Y.-W. Lee and S. Jang, Astrophys. J. 833, 236 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Marsakov, M. L. Gozha or V. V. Koval’.

Additional information

Russian Text © V.A. Marsakov, M.L. Gozha, V.V. Koval’, 2019, published in Astronomicheskii Zhurnal, 2019, Vol. 96, No. 3, pp. 219–228.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsakov, V.A., Gozha, M.L. & Koval’, V.V. Masses of RR Lyrae Stars with Different Chemical Abundances in the Galactic Field. Astron. Rep. 63, 203–211 (2019). https://doi.org/10.1134/S1063772919020069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772919020069

Navigation