Skip to main content
Log in

Laboratory Simulations of the Radial Distribution of the Toroidal Magnetic Field in an Axial Jet from a Young Stellar Object

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Results from experiments on the radial distribution of the magnetic fields in axial plasma flows formed during the compression of a plasma–current sheath carried out at the KPF-4-PHOENIX plasmafocus installation are presented. The plasma flows were generated in a discharge with stationary filling of the chamber with a working gas of argon or hydrogen, and also with a pulsed injection of argon. Analysis of the radial profiles of the magnetic field distribution and their time variations are used to localize regions of trappedmagnetic field, as well as regions where a return current flows at the periphery of the plasma flow. It is shown that the transverse (radial) size of the plasma flow depends on the density of the ambient medium (background gas) through which it propagates. These experiments were carried out in the framework of a project on laboratory simulations of non-relativistic jets from young stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Remington, and W. M. Wood-Vasey, Astrophys. J. 518, 821 (1999).

    Article  ADS  Google Scholar 

  2. J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004).

    Article  ADS  Google Scholar 

  3. D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev. Mod. Phys. 72, 167 (2000).

    Article  ADS  Google Scholar 

  4. D. D. Ryutov and B. A. Remington, Plasma Phys. Contrib. Fusion 44, B407 (2002).

    Google Scholar 

  5. B. A. Remington, R. P. Drake, and D. D. Ryutov, Rev. Mod. Phys. 78, 75 (2006).

    Article  ADS  Google Scholar 

  6. G. S. Bisnovatyi-Kogan, Astrophys. Space Sci. Lib. 186, 369 (1993).

    Article  ADS  Google Scholar 

  7. V. S. Beskin, Phys. Usp. 53, 1199 (2010).

    Article  ADS  Google Scholar 

  8. S. V. Lebedev, A. Ciardi, D. J. Ampleford, S. N. Bland, et al., Mon. Not. R. Astron. Soc. 361, 97 (2005).

    Article  ADS  Google Scholar 

  9. F. Suzuki-Vidal, S. V. Lebedev, A. Ciardi, L. A. Pickworth, et al., Astrophys. J. 815, 96 (2015).

    Article  ADS  Google Scholar 

  10. S. C. Bott-Suzuki, L. S. Caballero Bendixsen, S. W. Cordaro, I. C. Blesener, et al., Phys. Plasmas 22, 052710 (2015).

    Article  ADS  Google Scholar 

  11. T. Byvank, J. T. Banasek, W. M. Potter, J. B. Greenly, C. E. Seyler, and B. R. Kusse, Phys. Plasmas 24, 122701 (2017).

    Article  ADS  Google Scholar 

  12. B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, et al., Science (Washington, DC, U. S. ) 346, 325 (2014).

    Article  ADS  Google Scholar 

  13. V. S. Belyaev, G. S. Bisnovatyi-Kogan, A. I. Gromov, B. V. Zagreev, A. V. Lobanov, A. P. Matafonov, S. G. Moiseenko, and O. D. Toropina, Astron. Rep. 62, 162 (2018).

    Article  ADS  Google Scholar 

  14. V. S. Belyaev, A. P. Matafonov, and B. V. Zagreev, Int. J. Mod. Phys. D 27, 1844002 (2018).

    Article  ADS  Google Scholar 

  15. V. Krauz, V. Myalton, V. Vinogradov, E. Velikhov, et al., in Proceedings of the 42nd EPS Conference on Plasma Physics, Lisbon, Portugal, 2015, 39E, P4. 401. http://ocs. ciemat. es/EPS2015PAP/pdf/P4. 401. pdf

    Google Scholar 

  16. V. S. Beskin, Ya. N. Istomin, A. M. Kiselev, V. I. Krauz, et al., Izv. Vyssh. Uchebn. Zaved., Radiofiz. 59, 1004 (2016).

    Google Scholar 

  17. V. I. Krauz, V. V. Myalton, V. P. Vinogradov, E. P. Velikhov, et al., J. Phys.: Conf. Ser. 907, 012026 (2017).

    Google Scholar 

  18. V. I. Krauz, V. S. Beskin, and E. P. Velikhov, Int. J. Mod. Phys. D 27, 1844009 (2018).

    Article  ADS  Google Scholar 

  19. S. S. Anan’ev, V. I. Krauz, V. V. Myalton, and A. M. Kharrasov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 40 (1), 21 (2017).

    Google Scholar 

  20. S. N. Polukhin, A. M. Dzhamankulov, A. E. Gurei, V. Ya. Nikulin, E. N. Peregudova, and P. V. Silin, Plasma Phys. Rep. 42, 1127 (2016).

    Article  ADS  Google Scholar 

  21. S. A. Dan’ko, S. S. Ananyev, Yu. G. Kalinin, V. I. Krauz, and V. V. Myalton, Plasma Phys. Control. Fusion 59, 045003 (2017).

    Article  ADS  Google Scholar 

  22. E. Skladnik-Sadowska, S. A. Dan’ko, R. Kwiatkowski, M. J. Sadowski, et al., Phys. Plasmas 23, 122902 (2016).

    Article  ADS  Google Scholar 

  23. K. N. Mitrofanov, V. I. Krauz, V. V. Myalton, E. P. Velikhov, V. P. Vinogradov, and Yu. V. Vinogradova, J. Exp. Theor. Phys. 119, 910 (2014).

    Article  ADS  Google Scholar 

  24. I. Kalashnikov, P. Chardonnet, V. Chechetkin, A. Dodin, and V. Krauz, Phys. Plasmas 25, 062901 (2018).

    Article  ADS  Google Scholar 

  25. B. Reipurth, Nature (London, U. K. ) 340, 42 (1989).

    Article  ADS  Google Scholar 

  26. L. Hartmann, Nature (London, U. K. ) 340, 432 (1989).

    Article  ADS  Google Scholar 

  27. J.-F. Donati and J. D. Landstreet, Ann. Rev. Astron. Astrophys. 47, 333 (2009).

    Article  ADS  Google Scholar 

  28. A. V. Dodin, S. A. Lamzin, and G. A. Chuntonov, Astron. Lett. 38, 167 (2012).

    Article  ADS  Google Scholar 

  29. K. N. Mitrofanov, V. I. Krauz, E. V. Grabovski, V. V. Myalton, M. Paduch, and A. N. Gritsuk, Instrum. Exp. Tech. 61, 239 (2018).

    Article  Google Scholar 

  30. E. A. Andreeshchev, D. A. Voitenko, V. I. Krauz, A. I. Markoliya, Yu. V. Matveev, N. G. Reshetnyak, and E. Yu. Khautiev, Plasma Phys. Rep. 33, 218 (2007).

    Article  ADS  Google Scholar 

  31. D. A. Voitenko, S. S. Ananyev, G. I. Astapenko, A. D. Basilaia, A. I. Markolia, K. N. Mitrofanov, V. V. Myalton, A. P. Timoshenko, A. M. Kharrasov, and V. I. Krauz, Plasma Phys. Rep. 43, 1132 (2017).

    Article  ADS  Google Scholar 

  32. K. N. Mitrofanov, S. S. Anan’ev, D. A. Voitenko, V. I. Krauz, G. I. Astapenko, A. I. Markoliya, and V. V. Myalton, Astron. Rep. 61, 775 (2017).

    Article  ADS  Google Scholar 

  33. K. N. Mitrofanov, V. I. Krauz, V. V. Myalton, V. P. Vinogradov, A. M. Kharrasov, and Yu. V. Vinogradova, Astron. Rep. 61, 138 (2017).

    Article  ADS  Google Scholar 

  34. V. I. Krauz, D. A. Voitenko, K. N. Mitrofanov, V. V. Myalton, R. M. Arshba, G. I. Astapenko, A. I. Markoliya, and A. P. Timoshenko, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 38 (2), 19 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Krauz.

Additional information

Russian Text © V.I. Krauz, K.N. Mitrofanov, D.A. Voitenko, G.I. Astapenko, A.I. Markoliya, A.P. Timoshenko, 2019, published in Astronomicheskii Zhurnal, 2019, Vol. 96, No. 1, pp. 456–171.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krauz, V.I., Mitrofanov, K.N., Voitenko, D.A. et al. Laboratory Simulations of the Radial Distribution of the Toroidal Magnetic Field in an Axial Jet from a Young Stellar Object. Astron. Rep. 63, 146–160 (2019). https://doi.org/10.1134/S1063772919020057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772919020057

Navigation