Skip to main content
Log in

A Giant Water Maser Flare in the Galactic Source IRAS 18316-0602

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The results of long-term monitoring of the Galactic maser source IRAS 18316–0602 (G25.65+1.05) in the water-vapor line at frequency f = 22.235 GHz (616–523 transitioin) carried out on the 22-m Simeiz, 26-m HartRAO, and 26-m Torun radio telescopes are reported. The source has been episodically observed on the Simeiz telescope since 2000, with more regular observations beginning in 2017. A double flare was observed beginning in September 2017 and continuing to February 2018, which was the most powerful flare registered over the entire history of observations of this object. Most of the monitoring of the flare was carried out in a daily regime. Detailed analysis of the variations of the flux density, which reached a maximum value P ≈ 1.3 × 105 Jy, have led to important scientific conclusions about possible mechanisms for the emission in this water line. The exponential growth in the flux density in this double flare testifies that it was associated with a maser that was unsaturated right up to the maximum flux densities observed. An additional argument suggesting the maser was unsaturated is the relatively moderate degree of linear polarization (≈30%), nearly half the value displayed by the Galactic kilomasers in Orion KL. The accurate distance estimate for IRAS 18316–0602 (12.5 kpc) and the flux density at the flare maximum (≈1.3 × 105 Jy) makes this the most powerful Galactic kilomaser known. The double form of the flare with exponential rises in flux density rules out the possibility that the flare is the effect of directivity of a radiation beam relative to the observer. The physical nature of the flare is most likely related to internal parameters of the medium in which the maser clumps radiating in the water line are located. A rapid, exponential growth in the flux density of a kilomaser and associated exponential decays requires the presence of an explosive increase in the density of the medium and the photon flux, leading to an increase in the temperature by 10–40 K above the initial base level. A mechanism for the primary energy release in IRAS 18316–0602 is proposed, which is associated with a multiple massive star system located in a stage of evolution preceding its entry onto the main sequence. A flare in this object could initiate gravitational interaction between the central star and a massive companion at its periastron. The resulting powerful gravitational perturbation could lead to the ejection of the envelope of the central supermassive star, which gives rise to an explosive increase in the density and temperature of the associate gas–dust medium when it reaches the disk, where the maser clumps are located.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Cheung, D. M. Rank, C. H. Townes, D. D. Thornton, and W. J. Welch, Nature (London, U.K.) 221, 626 (1969).

    Article  ADS  Google Scholar 

  2. B. F. Burke, K. J. Johnston, V. A. Efanov, B. G. Clark, et al., Sov. Astron. 16, 379 (1972).

    ADS  Google Scholar 

  3. M. Harwit, D. A. Neufeld, G. J. Melnik, and M. J. Kaufman, Astrophys. J. Lett. 497, L105 (1998).

    Article  ADS  Google Scholar 

  4. C. Ceccarelli, E. Caux, G. J.White, S. Molinari, et al., Astron. Astrophys. 331, 372 (1998).

    ADS  Google Scholar 

  5. B. Nisini, M. Benedettini, T. Giannini, E. Caux, et al., Astron. Astrophys. 350, 529 (1999).

    ADS  Google Scholar 

  6. S. Maret, C. Caccarelli, E. Caux, A.G.G.M. Tielens, and A. Castels, Astron. Astrophys. 395, 573 (2002).

    Article  ADS  Google Scholar 

  7. F. Palla, J. Brand, R. Casaroni, G. Comoretto, and M. Felli, Astron. Astrophys. 246, 249 (1991).

    ADS  Google Scholar 

  8. S. Kurtz, E. Curchwell, and D. O. S. Wood, Astrophys. J. Suppl. 91, 659 (1994).

    Article  ADS  Google Scholar 

  9. W. H. McCutcheon, P. E. Dewdney, R. Purton, and T. Sato, Astron. J. 101, 1435 (1991).

    Article  ADS  Google Scholar 

  10. S. Kurtz and P. Hofner, Astron. J. 130, 711 (2005).

    Article  ADS  Google Scholar 

  11. T. Jenness, P. F. Scott, and R. Padman, Mon. Not. R. Astron. Soc. 276, 1024 (1995).

    Article  ADS  Google Scholar 

  12. W. H. McCutcheon, T. Sato, C. R. Purton, H. E. Matthews, and P. E. Dewfney, Astron. J. 110, 1762 (1995).

    Article  ADS  Google Scholar 

  13. L. Bronfman, L. A. Nyman, and J. May, Astron. Astrophys. Suppl. 115, 81 (1996).

    ADS  Google Scholar 

  14. S. Molinari, J. Brand, R. Cesaroni, and F. Palla, Astron. Astrophys. 308, 573 (1996).

    ADS  Google Scholar 

  15. S. P. Todd and S. K. Ronsay Howat, Mon. Not. R. Astron. Soc. 367, 238 (2006).

    Article  ADS  Google Scholar 

  16. E. L. Gibb, D. C. Whittet, A. C. A. Boogert, and A. G. G. M. Tielens, Astrophys. J. Suppl. 151, 35 (2004).

    Article  ADS  Google Scholar 

  17. J. Brand, R. Cesaroni, P. Caselli, M. Catarzi, et al., Astron. Astrophys. Suppl. 103, 541 (1994).

    ADS  Google Scholar 

  18. D. J. van derWalt, M. J. Gaylard, and G. C. Macleod, Astron. Astrophys. Suppl. 110, 81 (1995).

    ADS  Google Scholar 

  19. C. Codella, M. Felli, and V. Natale, Astron. Astrophys. 311, 971 (1996).

    ADS  Google Scholar 

  20. N. S. Nesterov, A. E. Vol’vach, I. D. Strepka, V. M. Shul’ga, V. I. Lebed’, and A. M. Pilipenko, Radiofiz. Radioastron. 5, 320 (2000).

    Google Scholar 

  21. A. E. Vol’vach, L. N. Vol’vach, I. D. Strepka, A. V. Antyufeev, V. V. Myshenko, S. Yu. Zubrin, V. M. Shul’ga, et al., Izv. Krymsk. Astrofiz. Obs. 104, 72 (2009).

    Google Scholar 

  22. T. M. Heckman and W. T. Sullivan, Astrophys. Lett. 17, 105 (1976).

    ADS  Google Scholar 

  23. F. D. Kahn, Astron. Astrophys. 37, 149 (1974).

    ADS  Google Scholar 

  24. W. K. Hartmann, Astrophys. J. Lett. 149, L87 (1967).

    Article  ADS  Google Scholar 

  25. P. Goldreich and J. Kwan, Astrophys. J. 191, 93 (1974).

    Article  ADS  Google Scholar 

  26. I. J. Stief, B. Donn, S. Glicker, E. F. Gentien, and J. E. Mentall, Astrophys. J. 171, 21 (1972).

    Article  ADS  Google Scholar 

  27. F. D. Kahn, Astron. Astrophys. 37, 149 (1974).

    ADS  Google Scholar 

  28. F. O. Clark, D. Buhl, and L. E. Snyder, Astrophys. J. 190, 545, (1974).

    Article  ADS  Google Scholar 

  29. B. F. Burke, T. S. Giuffrida, and A. D. Haschick, Astrophys. J. Lett. 226, L21 (1978).

    Article  ADS  Google Scholar 

  30. P. Goldreich, D. A. Keeley, and J. J. Kwan, Astrophys. J. 179, 111 (1973).

    Article  ADS  Google Scholar 

  31. P. Goldreich, D. A. Keeley, and J. J. Kwan, Astrophys. J. 182, 55 (1973).

    Article  ADS  Google Scholar 

  32. N. L. Cohen and S. H. Zisk, Bull. Am. Astron. Soc. 12, 507 (1980).

    ADS  Google Scholar 

  33. S. J. Chan, T. Henning, and K. Schreyer, Astrophys. J. Suppl. 115, 285 (1996).

    ADS  Google Scholar 

  34. B. Mookerjea and S. K. Ghosh, J. Astrophys. Astron. 20, 1 (1999).

    Article  ADS  Google Scholar 

  35. J. A. Green and N. M. McClure-Griffiths, Mon. Not. R. Astron. Soc. 417, 2500 (2011).

    Article  ADS  Google Scholar 

  36. E. E. Lekht, M. I. Pashchenko, G. M. Rudnitskii, and A. M. Tolmachev, Astron. Rep. 62, 213 (2018).

    Article  ADS  Google Scholar 

  37. R. Valdettaro, F. Palla, J. Brand, R. Cesaroni, G. Comoretto, M. Felli, and F. Palagi, Astron. Astrophys. 383, 244 (2002).

    Article  ADS  Google Scholar 

  38. G. M. Rudnitskii, E. E. Lekht, and I. I. Berulis, Astron. Lett. 25, 398 (1999).

    ADS  Google Scholar 

  39. A. E. Volvach, L. N. Volvach, M. Gordon, E. E. Lekht, G. M. Rudnitskij, and A. M. Tolmachev, Astron. Telegram, No. 10728, 1 (2017).

    Google Scholar 

  40. L. N. Volvach, A. E. Volvach, M. G. Larionov, G. C. MacLeod, S. P. van den Heever, P. Wolak, M. Olech, Monthly Not. Roy. Astron. Soc. 482, Issue 1, L90 (2019).

    Article  ADS  Google Scholar 

  41. T. Omodaka, T. Maeda, M. Miyoshi, A. Okudaira, et al., Publ. Astron. Soc. Jpn. 51, 333 (1999).

    Article  ADS  Google Scholar 

  42. T. Shimoikura, H. Kobayashi, T. Omodaka, P. J. Diamond, L. I.Matveyenko, and K. Fujisawa, Astrophys. J. 634, 459 (2005).

    Article  ADS  Google Scholar 

  43. Z. Abraham, N. L. Cohen, R. Ophel, J. C. Raffaelli, and S. H. Zisk, Astron. Astrophys. 100, 10 (1981).

    ADS  Google Scholar 

  44. Z. Abraham, J. W. S. Vilas Boas, and L. F. del Ciampo, Astron. Astrophys. 167, 311 (1986).

    ADS  Google Scholar 

  45. P. Goldreich and J. Kwan, Astrophys. J. 190, 27 (1974).

    Article  ADS  Google Scholar 

  46. D. N. Friedal and S. L. Widicus Weaver, Astrophys. J. 742, 64 (2011).

    Article  ADS  Google Scholar 

  47. M. Felly, E. Churchwell, T. L. Wilson, and G. B. Taylor, Astron. Astrophys. 98, 137 (1993).

    ADS  Google Scholar 

  48. S. Okumura, T. Yamashita, and S. Saco, Publ. Astron. Soc. Jpn. 63, 823 (1999).

    Article  ADS  Google Scholar 

  49. T. Hirota, M. Tsuboi, and Y. Kurono, Publ. Astron. Soc. Jpn. 66, 106 (2014).

    Article  ADS  Google Scholar 

  50. T. Hirota, M. K. Kim, and Y. Kurono, Astrophys. J. Lett. 739, 59 (2011).

    Article  ADS  Google Scholar 

  51. G. Garay, J. M. Moran, and A. D. Haschick, Astrophys. J. 338, 244 (2011).

    Article  ADS  Google Scholar 

  52. T. Shimoikura, H. Kobayashi, T. Omodaka, P. J. Diamond, L. I.Matveyenko, and K. Fujisawa, Astrophys. J. 634, 459 (2005).

    Article  ADS  Google Scholar 

  53. S. Parfenov and A. M. Sobolev, Mon. Not. R. Astron. Soc. 444, 620 (2014).

    Article  ADS  Google Scholar 

  54. K. Inayoshi, K. Sugiyama, and T. Hosokawa, Astrophys. J. 773, 70 (2013).

    Article  Google Scholar 

  55. J. P. Maswanganye, M. J. Gaylard, S. Goedhart, D. J. Walt, and R. S. van der Booth, Mon. Not. R. Astron. Soc. 446, 2730 (2015).

    Article  ADS  Google Scholar 

  56. R. Genzel, D. Dowens, J. M. Moran, K. J. Johnston, et al., Astron. Astrophys. 78, 239 (1979).

    ADS  Google Scholar 

  57. G. Siringo, E. Kreysa, A. Kovács, F. Schuller, et al., Astron. Astrophys. 497, 945 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Vol’vach.

Additional information

Russian Text © L.N. Vol’vach, A.E. Vol’vach, M.G. Larionov, G.C. MacLeod, S.P. van den Heever, P. Wolak, M. Olech, A.V. Ipatov, D.V. Ivanov, A.G. Mikhailov, A.E. Mel’nikov, K. Menten, A. Belloche, A. Weiss, P. Mazumdar, F. Schuller, 2019, published in Astronomicheskii Zhurnal, 2019, Vol. 96, No. 1, pp. 51–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vol’vach, L.N., Vol’vach, A., Larionov, M. et al. A Giant Water Maser Flare in the Galactic Source IRAS 18316-0602. Astron. Rep. 63, 49–65 (2019). https://doi.org/10.1134/S1063772919010062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772919010062

Navigation