Astronomy Reports

, Volume 62, Issue 12, pp 1036–1041 | Cite as

Relativistic Metrology of Near-Earth Space–Time and Its Practical Applications

  • V. F. FateevEmail author


Results of studies of relativistic effects for the time and frequency shifts for an Earth–satellite system of atomic clocks, and also for moving clocks on the Earth, are presented. In addition to the known solutions, the influence of the irregular rotation of the Earth and of the fields of the Moon and Sun on ground and satellite clocks are included, as well as the influence of a number of other perturbing factors that are difficult to take into account (atmospheric resistance, solar radiation pressure, the albedo of the Earth, etc.). The concept of a near-Earth “gravitational sphere,” characterized by the relativistic index of refraction and the gravitational coefficient for the transformation of frequencies, is introduced for computations of relativistic effects along space radio-wave propagation pathways. Applications for methods of relativisticmetrology are proposed. This paper is based on a presentation made at the conference “Modern Astrometry 2017,” dedicated to the memory of K.V. Kuimov (Sternberg Astronomical Institute, Moscow State University, October 23–25, 2017).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Taichenachev, V. I. Yudin, and S. N. Bagaev, Phys. Usp. 59, 184 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    L. Cacciapuoti and C. Salomon, in Proceedings of the International Symposium on Physical Sciences in Space, J. Phys.: Conf. Ser. 327, 012049 (2011).Google Scholar
  3. 3.
    V. F. Fateev, Relativistic Metrology of Near-Earth Space–Time (FGUP VNIIFTRI,Mendeleevo, 2017) [in Russian].Google Scholar
  4. 4.
    V. N. Rudenko, Sov. Phys. Usp. 21, 893 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    V. G. Turyshev, Phys. Usp. 52, 1 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    M. V. Sazhin, I. Yu. Vlasov, O. S. Sazhina, and V. G. Turyshev, Astron. Rep. 54, 959 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    I. Yu. Vlasov, V. E. Zharov, and M. V. Sazhin, Astron. Rep. 56, 984 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    S. M. Kopeikin, Sov. Astron. 33, 550 (1989).ADSMathSciNetGoogle Scholar
  9. 9.
    P. Wolf and G. Petit, Astron. Astrophys. 304, 653 (1995).ADSGoogle Scholar
  10. 10.
    G. Petit and P. Wolf, Metrologia 42, 138 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    R. A. Nelson, Metrologia 48, 171 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    N. Ashby, Liv. Rev. Relativity 6, 1 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    V. F. Fateev and V. P. Sysoev, Meas. Tech. 57, 891 (2014).CrossRefGoogle Scholar
  14. 14.
    E. A. Mikrin, M. V. Mikhailov, S. N. Rozhkov, A. S. Semenov, I. A. Krasnopol’skii, V. N. Pochukaev, Yu. G. Markov, and V. V. Perepelkin, in Proceedings of the 21st St. Petersburg International Conference on Integrated Navigation Systems (Elektropribor, St. Petersburg, 2014).Google Scholar
  15. 15.
    V. F. Fateev, S. M. Kopeikin, and S. L. Pasynok, Meas. Tech. 58, 647 (2015).CrossRefGoogle Scholar
  16. 16.
    V. K. Abalakin, E. P. Aksenov, E. A. Grebennikov, and Yu. A. Ryabov, Handbook for Celestial Mechanics and Astrodynamics (Nauka, Moscow, 1971) [in Russian].Google Scholar
  17. 17.
    G. Petit and B. Lusum, IERS Tech. Note No. 32 (IERS, Paris, 2010).Google Scholar
  18. 18.
    L. D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka,Moscow, 1982; Pergamon,New York, 1984).Google Scholar
  19. 19.
    V. F. Fateev, Elektromagn. Volny Elektron. Sist. 18 (5), 073 (2013).Google Scholar
  20. 20.
    V. F. Fateev, A. I. Zharikov, V. P. Sysoev, E. A. Rybakov, and F. R. Smirnov, Dokl. Earth Sci. 472, 91 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    S. I. Donchenko, O. V. Denisenko, V. F. Fateev, and E. A. Rybakov, in Proceedings of a Conference on Navigation using the Gravitational Field of the Earth and Its Metrological Support (Izd. Mendeleevo, FGUP VNIIFTRI, Mendeleevo, 2017) [in Russian].Google Scholar
  22. 22.
    V. F. Fateev, E. A. Rybakov, and F. R. Smirnov, Tech. Phys. Lett. 43, 456 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.All-Russia Research Institute of Physical, Technical and Radio Technical MeasurementsMendeleevo, Moscow oblastRussia

Personalised recommendations