Skip to main content
Log in

The Spectral Type of the Ionizing Stars and the Infrared Fluxes of HII Regions

  • Published:
Astronomy Reports Aims and scope Submit manuscript

An Erratum to this article was published on 05 August 2019

This article has been updated

Abstract

The 20-cm radio continuum fluxes of 91 HII regions in a previously compiled catalog have been determined. The spectral types of the ionizing stars in 42 regions with known distances are estimated. These spectral types range from B0.5 to O7, corresponding to effective temperatures of 29 000–37 000 K. The dependences of the infrared (IR) fluxes at 8, 24, and 160 μm on the 20-cm flux are considered. The IR fluxes are used as a diagnostic of heating of the matter, and the radio fluxes as measurements of the number of ionizing photons. It is established that the IR fluxes grow approximately linearly with the radio flux. This growth of the IR fluxes probably indicates a growth of the mass of heated material in the envelope surrounding the HII region with increasing effective temperature of the star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 05 August 2019

    Several errors were found in this paper, which however did not influence its main conclusions. In Table 2 of Section 2, the references for the data in columns (6)–(9) and (10)–(11) were given incorrectly, and incorrect values for <Emphasis Type="Italic">T</Emphasis><Subscript>eff</Subscript> were given in column (10). These errors were discovered by the authors in the course of using the data in other studies, and do not make a signficant contributions to the figures, results, or conclusions of this paper.

References

  1. D. Russeil, Astron. Astrophys. 397, 133 (2003).

    Article  ADS  Google Scholar 

  2. M. J. Reid, K. M. Menten, A. Brunthaler, X. W. Zheng, et al., Astrophys. J. 783, 130 (2014).

    Article  ADS  Google Scholar 

  3. L. D. Anderson, T. M. Bania, D. S. Balser, V. Cunningham, T. V. Wenger, B. M. Johnstone, and W. P. Armentrout, Astrophys. J. Supp. 212, 1 (2014).

    Article  ADS  Google Scholar 

  4. F. H. Shu, The Physics of Astrophysics, Vol. 2: Gas Dynamics (Univ. Science Books, Mill Valley, 1992).

    Google Scholar 

  5. D. J. Hollenbach and A. G. G. M. Tielens, Rev. Mod. Phys. 71, 173 (1999).

    Article  ADS  Google Scholar 

  6. E. Churchwell, M. S. Povich, D. Allen, M. G. Taylor, et al., Astrophys. J. 649, 759 (2006).

    Article  ADS  Google Scholar 

  7. E. Churchwell, D. F. Watson, M. S. Povich, M. G. Taylor, et al., Astrophys. J. 670, 428 (2007).

    Article  ADS  Google Scholar 

  8. A. P. Topchieva, D. S. Wiebe, M. S. Kirsanova, and V. V. Krushinskii, Astron. Rep. 61, 1015 (2017).

    Article  ADS  Google Scholar 

  9. L. Deharveng, F. Schuller, L. D. Anderson, A. Zavagno, et al., Astron. Astrophys. 523, A6 (2010).

    Article  Google Scholar 

  10. B. T. Draine, D. A. Dale, G. Bendo, K.D. Gordon, et al., Astrophys. J. 663, 866 (2007).

    Article  ADS  Google Scholar 

  11. B. T Draine and A. Li, Astrophys. J. 657, 810 (2007).

    Article  ADS  Google Scholar 

  12. E. Kruegel, The Physics of Interstellar Dust (Inst. Physics, Bristol, UK, 2003).

    Book  Google Scholar 

  13. J. S. Mathis, Publ. Astron. Soc. Pacif. 98, 995 (1986).

    Article  ADS  Google Scholar 

  14. Y. N. Pavlyuchenkov, M. S. Kirsanova, and D. S. Wiebe, Astron. Rep. 57, 573 (2013).

    Article  ADS  Google Scholar 

  15. V. V. Akimkin, M. S. Kirsanova, Y. N. Pavlyuchenkov, and D. S. Wiebe, Mon. Not. R. Astron.Soc. 449, 440 (2015).

    Article  ADS  Google Scholar 

  16. V. V. Akimkin, M. S. Kirsanova, Ya. N. Pavlyuchenkov, and D. S. Wiebe, Mon. Not. R. Astron. Soc. 469, 630 (2017).

    Article  ADS  Google Scholar 

  17. M. S. Murga, S. A. Khoperskov, and D. S. Wiebe, Astron. Rep. 60, 669 (2016).

    Article  ADS  Google Scholar 

  18. W. J. Dirienzo, R. Indebetouw, C. Brogan, and C. J. Cyganowski, Astron. J. 144, 26 (2012).

    Article  Google Scholar 

  19. T. Hosokawa and S. Inutsuka, Astrophys. J. 646, 240 (2006).

    Article  ADS  Google Scholar 

  20. M. S. Kirsanova, D. S. Wiebe, and A. M. Sobolev, Astron. Rep. 53, 611 (2009).

    Article  ADS  Google Scholar 

  21. A. Topchieva, D. Wiebe, M. Kirsanova, and V. Krushinsky, ASP Conf. Ser. 510, 98 (2017).

    ADS  Google Scholar 

  22. A. Topchieva, D. Wiebe, and M. S. Kirsanova, Res. Astron. Astrophys. (2018, in press).

    Google Scholar 

  23. J. J. Condon, Ann. Rev. Astron. Astrophys. 30, 575 (1992).

    Article  ADS  Google Scholar 

  24. D. J. Helfand, R. H. Becker, R. L. White, A. Fallon, and S. Tuttle, Astron. J. 131, 2525 (2006).

    Article  ADS  Google Scholar 

  25. A. Tsivilev, Astron. Rep. 37, 39 (1993).

    ADS  Google Scholar 

  26. A. G. G. M. Tielens, The Physics and Chemistry of the Interstellar Medium (Cambridge Univ. Press, UK, 2005).

    Book  Google Scholar 

  27. L. D. Anderson, L. Deharveng, A. Zavagno, P. Tremblin, et al., Astrophys. J. 800, 101 (2015).

    Article  ADS  Google Scholar 

  28. W. D. Vacca, C. D. Garmany, and J.M. Shull, Astrophys. J. 460, 914 (1996).

    Article  ADS  Google Scholar 

  29. L. J. Smith, R. P. F. Norris, and P. A. Crowther, Mon. Not. R. Astron. Soc. 337, 1309 (2002).

    Article  ADS  Google Scholar 

  30. V. S. Avedisova and G. I. Kondratenko, Nauch. Inform. 56, 59 (1984).

    ADS  Google Scholar 

  31. S. A. Alexeeva, A. M. Sobolev, S. Yu. Gorda, M. V. Yushkin, and V. McSwain, Astrophys. Bull. 68, 169–176 (2013).

    Article  ADS  Google Scholar 

  32. N. R. Walborn, Astrophys. J. Suppl. 23, 257 (1971).

    Article  ADS  Google Scholar 

  33. N. R. Walborn, Astron. J. 77, 312 (1972).

    Article  ADS  Google Scholar 

  34. N. Panagia and C. M. Walmsley, Astron. Astrophys. 70, 411 (1978).

    ADS  Google Scholar 

  35. R. H. Becker, R. L. White, D. J. Helfand, and S. Zoonematkermani, Astrophys. J. Suppl. 91, 347 (1994).

    Article  ADS  Google Scholar 

  36. R. J. Simpson, M. S. Povich, S. Kendrew, C. J. Lintott, et al., Mon. Not. R. Astron. Soc. 424, 2442 (2012).

    Article  ADS  Google Scholar 

  37. J. S. Urquhart, M. G. Hoare, S. L. Lumsden, R. D. Oudmaijer, et al., Astron. Astrophys. 507, 795 (2009).

    Article  ADS  Google Scholar 

  38. M. P. Egan, S. D. Price, K. E. Kraemer, D. R. Mizuno, S. J. Carey, C. O. Wright, C. W. Engelke, M. Cohen, and M. G. Gugliotti, VizieR Online Data Catalog 5114 (2003).

  39. N. Parker, Astrophys. J. 117, 431 (1953).

    Article  ADS  Google Scholar 

  40. D. Osterbrock and G. Ferland Astrophysics of GaseousNebulae and Active Galactic Nuclei (Univ. Science Books, 2006).

    Google Scholar 

  41. K. Krasnobaev and R. Tagirova, Mon. Not. R. Astron. Soc. 469, 1403 (2017).

    Article  ADS  Google Scholar 

  42. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley-Interscience, New York 1978).

    Google Scholar 

  43. A. M. N. Ferguson, R. F. G. Wyse, J. S. Gallagher, and D. A. Hunter, Astron. J. 111, 2265 (1996).

    Article  ADS  Google Scholar 

  44. M. Oey and R. Kennicutt, Mon. Not. R. Astron. Soc. 291, 827 (1997).

    Article  ADS  Google Scholar 

  45. Th. P. Robitaille, E. J. Tollerud, P. Greenfield, M. Droettboom, et al. (Astropy Collab.), Astron. Astrophys. 558, A33 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Topchieva.

Additional information

Original Russian Text © A.P. Topchieva, M.S. Kirsanova, A.M. Sobolev, 2018, published in Astronomicheskii Zhurnal, 2018, Vol. 95, No. 11, pp. 798–807.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topchieva, A.P., Kirsanova, M.S. & Sobolev, A.M. The Spectral Type of the Ionizing Stars and the Infrared Fluxes of HII Regions. Astron. Rep. 62, 764–773 (2018). https://doi.org/10.1134/S1063772918110082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918110082

Navigation