Skip to main content
Log in

WR + OB Binary Systems: Observational Evidence of Their Formation as a Result of Mass Exchange

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

An analysis of observational data shows that, in most cases,Wolf–Rayet (WR) stars in known WR+ OB binary systems were formed as a result of mass transfer in initial OB + OB systems, rather than through radial mass loss by the more massive OB star via its stellar wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Masevich and A. V. Tutukov, Stellar Evolution: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  2. B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, et al., Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. V. Tutukov and A. M. Cherepashchuk, Astron. Rep. 61, 833 (2017).

    Article  ADS  Google Scholar 

  4. A. V. Tutukov and L. R. Yungel’son, Nauch. Inform. Astrosoveta AN SSSR 27, 58 (1973).

    ADS  Google Scholar 

  5. E. P. J. van den Heuvel, in Structure and Evolution of Close Binary Systems, Ed. by P. P. Eggleton, B. Mitton, and J. Whelan (Reidel, Dordrecht, 1976), p. 35.

  6. A. F. J. Moffat, in Wolf–Rayet Stars: Binaries, Colliding Winds, Evolution, Ed. by K. A. van der Hucht and P. M. Williams (Kluwer, Dordrecht, 1995), p. 2013.

  7. P. P. Eggleton and F. Verbunt, Mon. Not. R. Astron. Soc. 220, 13p (1986).

    Article  ADS  Google Scholar 

  8. D. Vanbeveren, Astron. Astrophys. 252, 159 (1991).

    ADS  Google Scholar 

  9. P. S. Conti, Mem. Soc. R. Sci. Liege 9 (6), 193 (1976).

    ADS  Google Scholar 

  10. A. M. Cherepashchuk, Close Binary Stars, Parts 1, 2 (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  11. K. A. van der Hucht, New Astron. Rev. 45, 135 (2001).

    Article  ADS  Google Scholar 

  12. R. M. Humpreys and K. Davidson, Publ. Astron. Soc. Pacif. 106, 1025 (1994).

    Article  ADS  Google Scholar 

  13. A. M. Cherepashchuk and V. G. Karetnikov, Astron. Rep. 47, 38 (2003).

    Article  ADS  Google Scholar 

  14. A. H. Batten, J. M. Fletcher, and D. G. MacCarthy, Eighth Catalogue of theOrbital Elements of Spectroscopic Binary Systems, Publ. DAOVictoriaXVII (Dominion Astrophys. Observ., Victoria, Canada, 1989).

    Google Scholar 

  15. J.-P. Zahn, Astron. Astrophys. 57, 383 (1977).

    ADS  Google Scholar 

  16. J.-P. Zahn, Astron. Astrophys. 57, 386 (1977); Astron. Astrophys. 67, 162(E) (1978).

    ADS  Google Scholar 

  17. P. A. Crowther, L. J. Smith, D. J. Hullier, and W. Schmutz, Astron. Astrophys. 293, 427 (1995).

    ADS  Google Scholar 

  18. G. S. Bisnovatyi-Kogan and D. K. Nadejin, Astrophys. Space Sci. 15, 353 (1972).

    Article  ADS  Google Scholar 

  19. A. Maeder, in Wolf–Rayet Stars in the Framework of Stellar Evolution,Ed. by J. M. Vreux et al. (Liege Univ., Liege, Belgium, 1996), p. 39.

  20. J. P. De Greve, in Wolf–Rayet Stars in the Framework of Stellar Evolution, Ed. by J. M. Vreux et al. (Liege Univ., Liege, Belgium, 1996), p. 55.

  21. D. Vanbeveren, in Evolutionary Processes in Binary Stars, Ed. by M. Wijers, M. Davies, and C. Tout (Kluwer, Dordrecht, 1996), p. 155.

  22. N. Soker, Astron. Astrophys. 357, 557 (2000).

    ADS  Google Scholar 

  23. M. M. Shara, S. M. Crawford, D. Vanbeveren, A. F. J. Moffat, D. Zurek, and L. Crause, Mon. Not. R. Astron. Soc. 464, 2066 (2017).

    Article  ADS  Google Scholar 

  24. D. Vanbeveren, N. Mennekens, M. M. Shara, and A. F. J. Moffat, Astron. Astrophys. arXiv:1711. 05989v. 1.

  25. W. Packet, Astron. Astrophys. 102, 17 (1981).

    ADS  Google Scholar 

  26. J. Petrovic, N. Langer, and K. A. Van der Hucht, Astron. Astrophys. 435, 1013 (2005).

    Article  ADS  Google Scholar 

  27. R. Kippenhahn and A. Weigert, Z. Astrophys. 65, 251 (1967).

    ADS  Google Scholar 

  28. J. N. Grunhut, G. A. Wade, M. Leutenegger, V. Petit, et al., Mon. Not. R. Astron. Soc. 428, 1686 (2013).

    Article  ADS  Google Scholar 

  29. Kh. F. Khaliullin and A. I. Khaliullina, Mon. Not. R. Astron. Soc. 382, 356 (2007).

    Article  ADS  Google Scholar 

  30. A. A. Boyarchuk, D. V. Bisikalo, O. A. Kuznetsov, and V. M. Chechetkin, Mass Transfer in Close Binary Stars (Taylor and Francis, London, New York, 2002).

    Google Scholar 

  31. K. Belezynski, D. E. Holz, T. Builk, and R. O’Sbaugbnessy, Nature 534, 512 (2016).

    Article  ADS  Google Scholar 

  32. A. I. Bogomazov, A. M. Cherepashchuk, V. M. Lipunov, and A. V. Tutukov, New Astron. 58, 33 (2018).

    Article  ADS  Google Scholar 

  33. E. P. J. van den Heuvel, S. F. Portegis Zwart, and S. E. de Mink, Mon. Not. R. Astron. Soc. (in press); arXiv: 1701. 02355v1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Cherepashchuk.

Additional information

Original Russian Text © A.M. Cherepashchuk, 2018, published in Astronomicheskii Zhurnal, 2018, Vol. 95, No. 9, pp. 602–608.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherepashchuk, A.M. WR + OB Binary Systems: Observational Evidence of Their Formation as a Result of Mass Exchange. Astron. Rep. 62, 567–573 (2018). https://doi.org/10.1134/S1063772918090032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918090032

Navigation