Skip to main content
Log in

Activity of the M8 Dwarf TRAPPIST-1

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The results of an analysis of observations of the cool (M8) dwarf TRAPPIST-1 obtained on the Kepler Space Telescope (the K2 continuation mission) are presented. TRAPPIST-1 possesses a planetary system containing at least seven planets. In all, the observations consist of 105 584 individual brightness measurements made over a total duration of 79 days. Brightness power spectra computed for TRAPPIST-1 exhibit a peak corresponding to P0 = 3.296 ± 0.007d. There are also two peaks with lower significances at P1 = 2.908d and P2 = 2.869d, which cannot be explained by the presence of differential rotation. The observational material available for TRAPPIST-1 is subdivided into 21 datasets, each covering one stellar rotation period. Each of the individual light curves was used to construct a map of the star’s temperature inhomogeneities. On average, the total spotted area of TRAPPIST-1 was S = 5% of the entire visible area. The difference between the angular rotation rates at the equator and at the pole is estimated to be ΔΩ = 0.006. The new results obtained together with data from the literature are used to investigate the properties of this unique star and compare them to the properties of other cool dwarfs. Special attention is paid to the star’s evolutionary status (its age). All age estimates for TRAPPIST-1 based on its activity characteristics (rotation, spot coverage, UV and X-ray flux, etc.) indicate that the star is young.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gillon, E. Jehin, S. M. Lederer, L. Delrez, et al., Nature (London, U.K.) 533, 221 (2016).

    Article  ADS  Google Scholar 

  2. M. Gillon, A. H. M. J. Triaud, B.-O. Demory, E. Jehin, et al., Nature (London, U.K.) 542, 456 (2017).

    Article  ADS  Google Scholar 

  3. R. Luger, M. Sestovic, E. Kruse, S. L. Grimm, et al., Nat. Astron. 1, 0129 (2017).

    Article  Google Scholar 

  4. A. J. Burgasser and E. E. Mamajek, Astrophys. J. 845, 110 (2017).

    Article  ADS  Google Scholar 

  5. C. X. Huang, K. Penev, J. D. Hartman, G. Á. Bakos, W. Bhatti, I. Domsa, and M. de Val-Borro, Mon. Not. R. Astron. Soc. 454, 4159 (2015).

    Article  ADS  Google Scholar 

  6. I. S. Savanov and E. S. Dmitrienko, Astron. Rep. 55, 890 (2011).

    Article  ADS  Google Scholar 

  7. I. S. Savanov and E. S. Dmitrienko, Astron. Rep. 56, 116 (2012).

    Article  ADS  Google Scholar 

  8. K. Vida, Z. Kövári, A. Pál, K. Oláh, and L. Kriskovics, Astrophys. J. 841, 124 (2017).

    Article  ADS  Google Scholar 

  9. I. S. Savanov, Astrophys. Bull. 70, 292 (2015).

    Article  ADS  Google Scholar 

  10. I. S. Savanov, N. G. Gladilina and E. S. Dmitrienko, Astron. Rep. 60, 1006 (2016).

    Article  ADS  Google Scholar 

  11. I. S. Savanov and K. G. Strassmeier, Astron. Nachr. 329, 364 (2008).

    Article  ADS  Google Scholar 

  12. I. S. Savanov, Astron. Rep. 55, 341 (2011).

    Article  ADS  Google Scholar 

  13. S. P. Jäervinen, H. Korhonen, S. V. Berdyugina, I. Ilyn, K. G. Strassmeier, M. Weber, I. Savanov, and I. Tuominen, Astron. Astrophys. 488, 1047 (2008).

    Article  ADS  Google Scholar 

  14. I. S. Savanov, Astron. Rep. 54, 1125 (2010).

    Article  ADS  Google Scholar 

  15. J. R. Barnes, A. Colier Cameron, J.-F. Donati, D. J. James, S. C. Marsden and P. Petit, Mon. Not. R. Astron. Soc. 357, L1 (2005).

    Article  ADS  Google Scholar 

  16. E. S. Dmitrienko and I. S. Savanov, Astron. Rep. 61, 871 (2017).

    Article  ADS  Google Scholar 

  17. E. S. Dmitrienko and I. S. Savanov, Astron. Rep. 61, 122 (2017).

    Article  ADS  Google Scholar 

  18. I. S. Savanov and E. S. Dmitrienko, Astron. Rep. 57, 657 (2013).

    Article  Google Scholar 

  19. A. McQuillan, S. Aigrain, and T. Mazeh, Mon. Not. R. Astron. Soc. 432, 1203 (2013).

    Article  ADS  Google Scholar 

  20. T. Reinhold and L. Gison, Astron. Astrophys. 583, A65 (2015).

    Article  ADS  Google Scholar 

  21. I. S. Savanov, S. A. Naroenkov, M. A. Nalivkin, et al., Astrophys. Bull. (2018, in press).

    Google Scholar 

  22. I. S. Savanov and E. S. Dmitrienko, Astron. Rep. 61, 996 (2017).

    Article  ADS  Google Scholar 

  23. P. J. Wheatley, T. Louden, V. Bourrier, D. Ehrenreich, and M. Gillon, Mon. Not. R. Astron. Soc. 465, L74 (2017).

    Article  ADS  Google Scholar 

  24. V. Bourrier, D. Ehrenreich and P. J. Wheatley, Astron. Astrophys. 599, L3 (2017).

    Article  ADS  Google Scholar 

  25. D. Fabbian, R. Simoniello, R. Collet, S. Criscuoli, et al., Astron. Nachr. 338, 753 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Dmitrienko.

Additional information

Original Russian Text © E.S. Dmitrienko, I.S. Savanov, 2018, published in Astronomicheskii Zhurnal, 2018, Vol. 95, No. 6, pp. 438–446.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrienko, E.S., Savanov, I.S. Activity of the M8 Dwarf TRAPPIST-1. Astron. Rep. 62, 412–419 (2018). https://doi.org/10.1134/S1063772918060033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918060033

Navigation