Skip to main content
Log in

Segregation of Calcium Isotopes in the Atmospheres of CP Stars as a Consequence of Light-Induced Drift

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A mechanism for the segregation of calcium isotopes in the atmospheres of chemically peculiar (CP) stars due to light-induced drift (LID) of singly charged 48Ca+ ions is discussed. One peculiarity of Ca+ is that an adequate description of the effect of LID requires taking into account several energy levels of Ca+, and thus several pairs of relative differences (ν i ν k )/ν i for the transport frequencies for collisions of levels i and k with neutral atoms (hydrogen, helium). The known real (calculated ab initio) interaction potentials are used to numerically calculate the factors (ν i ν k )/ν i for several states of Ca+ for collisions with H and He atoms. These computations show that, at the temperatures characteristic of the atmospheres of CP stars, T = 6600−12 000 K, fairly high values are obtained for Ca+ ions, (ν i ν k )/ν i ≈ 0.4−0.6. Simple, transparent computations demonstrate that the LID rates of Ca+ ions in the atmospheres of cool CP stars (Teff = 6600 K) exceed the drift rate due to light pressure by two orders of magnitude. The LID is directed upward in the stellar atmosphere, and the heavy isotope 48Ca is pushed into upper layers of the atmosphere. This can explain the observed predominance of the heavy isotope 48Ca in the upper atmospheric layers of CP stars; according to the radiative-diffusion theory, the action of light pressure alone (in the absence of LID) would lead to sinking of the isotope 48Ca deeper into stellar atmosphere, following the lighter main isotope 40Ca. The 48Ca+ LIDrate decreases and its drift rate due to light pressure increases with growth of the effective temperatures in the atmospheres of CP stars. The manifestations of LID and light pressure are roughly comparable in the atmospheres of CP stars with effective temperatures near Teff = 9500 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. W. Preston, Ann. Rev. Astron. Astrophys. 12, 257 (1974).

    Article  ADS  Google Scholar 

  2. E. F. Borra, J. D. Landstreet, and L. Mestel, Ann. Rev. Astron. Astrophys. 20, 191 (1982).

    Article  ADS  Google Scholar 

  3. V. L. Khokhlova, Itogi Nauki Tekh., Ser.: Astron. 24, 233 (1983).

    Google Scholar 

  4. G. Michaud, Astrophys. J. 160, 641 (1970).

    Article  ADS  Google Scholar 

  5. G. Michaud, Y. Charland, S. Vauclair, and G. Vauclair, Astrophys. J. 120, 447 (1976).

    Article  ADS  Google Scholar 

  6. G. Michaud, Astron. J. 85, 589 (1980).

    Article  ADS  Google Scholar 

  7. G. Michaud, in IAU Symposium 224: The A-Star Puzzle, Ed. by J. Zverko, J. Ziznovsky, S. J. Adelman, and W. W. Weiss (Cambridge University Press, Cambridge, 2004), p.173.

  8. G. Michaud, G. Alecian, and J. Richer, Atomic Diffusion in Stars (Springer Int., New York, London, Switzerland, 2015).

    Book  Google Scholar 

  9. S. N. Atutov and A. M. Shalagin, Sov. Astron. Lett. 14, 284 (1988).

    ADS  Google Scholar 

  10. F. Kh. Gel’mukhanov and A. M. Shalagin, JETP Lett. 29, 711 (1979).

    ADS  Google Scholar 

  11. V. D. Antsygin, S. N. Atutov, F. Kh. Gel’mukhanov, G. G. Telegin, and A. M. Shalagin, JETP Lett. 30, 243 (1979).

    ADS  Google Scholar 

  12. K. A. Nasyrov and A. M. Shalagin, Astron. Astrophys. 268, 201 (1993)

    ADS  Google Scholar 

  13. F. LeBlanc and G. Michaud, Astrophys. J. 408, 251 (1993).

    Article  ADS  Google Scholar 

  14. A. Aret and A. Sapar, Astron. Nachr. 323, 21 (2002).

    Article  ADS  Google Scholar 

  15. A. Sapar, A. Aret, L. Sapar, and R. Poolamae, New Astron. Rev. 53, 240 (2009).

    Article  ADS  Google Scholar 

  16. L. Sapar, A. Sapar, R. Poolamae, and A. Aret, Baltic Astron. 23, 171 (2014).

    ADS  Google Scholar 

  17. T. Ryabchikova, O. Kochukhov, and S. Bagnulo, Astron. Astrophys. 408, 811 (2008).

    Article  ADS  Google Scholar 

  18. C. R. Cowley, S. Hubrig, and J. F. Gonzalez, Mon. Not. R. Astron. Soc. 396, 485 (2009).

    Article  ADS  Google Scholar 

  19. A. I. Parkhomenko and A. M. Shalagin, Astron. Rep. 61, 974 (2017).

    Article  ADS  Google Scholar 

  20. H. Habli, H. Ghalla, B. Oujia, and F. X. Gadea, Eur. Phys. J. D 64, 5 (2011).

    Article  ADS  Google Scholar 

  21. N. F. Allard and V. A. Alekseev, Adv. Space Res. 54, 1248 (2014).

    Article  ADS  Google Scholar 

  22. A. A. Radtsig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Energoatomizdat, Moscow, 1986; Springer, Berlin, 1985).

    Book  Google Scholar 

  23. NIST Atomic Spectra Database. https://www.nist.gov/pml/atomic-spectradatabase.

  24. S. G. Rautian and A. M. Shalagin, Kinetic Problems of Nonlinear Spectroscopy (Elsevier, Amsterdam, New York, 1991).

    Google Scholar 

  25. D. Mihalas, Stellar Atmospheres (W. H. Freeman, San Francisco, 1978;Mir, Moscow, 1982).

    Google Scholar 

  26. F. K. Gel’mukhanov, L. V. Il’ichov, and A. M. Shalagin, Physica A 137, 502 (1986).

    Article  ADS  Google Scholar 

  27. J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    MATH  Google Scholar 

  28. J. H. Fertziger and G. Caper, Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972; Mir, Moscow, 1976).

    Google Scholar 

  29. W. A. Hamel, J. E. M. Haverkort, H. G. C. Werij, and J. P. Woerdman, J. Phys. B 19, 4127 (1986).

    Article  ADS  Google Scholar 

  30. V. Aquilanti and F. Vecchiocattivi, Chem. Phys. Lett. 156, 109 (1989).

    Article  ADS  Google Scholar 

  31. V. M. Zhdanov, Transport Processes in Multicomponent Plasma (Energoizdat, Moscow, 1982; CRC, Boca Raton, FL, 2002).

    Google Scholar 

  32. S. Maleki and A. T. Goble, Phys. Rev. A 45, 524 (1992).

    Article  ADS  Google Scholar 

  33. F. Gebert, Y. Wan, F. Wolf, C. N. Angstmann, J. C. Berengut, and P. O. Schmidt, Phys. Rev. Lett. 115, 053003 (2015).

    Article  ADS  Google Scholar 

  34. W. Nörtershäuser, K. Blaum, K. Icker, P. Müller, A. Schmitt, K. Wendt, and B. Wiche, Eur. Phys. J. D 2, 33 (1998).

    Article  ADS  Google Scholar 

  35. R. L. Kurucz, Astrophys. J. Suppl. Ser. 40, 1 (1979).

    Article  ADS  Google Scholar 

  36. Y. Fremat, L. Houziaux, and Y. Andrillat, Mon. Not. R. Astron. Soc. 279, 25 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Parkhomenko.

Additional information

Original Russian Text © A.I. Parkhomenko, A.M. Shalagin, 2018, published in Astronomicheskii Zhurnal, 2018, Vol. 95, No. 6, pp. 407–420.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkhomenko, A.I., Shalagin, A.M. Segregation of Calcium Isotopes in the Atmospheres of CP Stars as a Consequence of Light-Induced Drift. Astron. Rep. 62, 383–395 (2018). https://doi.org/10.1134/S1063772918050050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918050050

Navigation