Advertisement

Astronomy Reports

, Volume 62, Issue 4, pp 281–287 | Cite as

The Nature of Variations in Anomalies of the Chemical Composition of the Solar Corona with the 11-Year Cycle

  • V. V. Pipin
  • V. M. Tomozov
Article

Abstract

Evidence that the distribution of the abundances of admixtures with low first-ionization potentials (FIP < 10 eV) in the lower solar corona could be associated with the typology of the largescale magnetic field is presented. Solar observations show an enhancement in the abundances of elements with low FIPs compared to elements with high FIPs (>10 eV) in active regions and closed magnetic configurations in the lower corona. Observations with the ULYSSES spacecraft and at the Stanford Solar Observatory have revealed strong correlations between the manifestation of the FIP effect in the solar wind, the strength of the open magnetic flux (without regard to sign), and the ratio of the large-scale toroidal and poloidal magnetic fields at the solar surface. Analyses of observations of the Sun as a star show that the enhancement of the abundances of admixtures with low FIPs in the corona compared to their abundances in the photosphere (the FIP effect) is closely related to the solar-activity cycle and also with variations in the topology of the large-scale magnetic field. A possible mechanism for the relationship between the FIP effect and the spectral type of a star is discussed in the framework of solar–stellar analogies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-F. Donati and J. D. Landstreet, Ann. Rev. Astron. Astrophys. 47, 333 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    A.A. Vidotto, S. G. Gregory, M. Jardine, J. F. Donati, et al., Mon. Not. R. Astron. Soc. 441, 2361 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    V. See, M. Jardine, A. A. Vidotto, J.-F. Donati, et al., Mon. Not. R. Astron. Soc. 462, 4442 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    R.W. Noyes, N.O. Weiss, and A. H. Vaughan, Astrophys. J. 287, 769 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    J.-F. Donati, M. M. Jardine, P. Petit, J. Morin, et al., Astron. Soc. Pacif. Conf. Ser. 384, 156 (2008).ADSGoogle Scholar
  6. 6.
    L. Fletcher, P. J. Cargill, S. K. Antiochos, and B. V. Gudiksen, Space Sci. Rev. 188, 211 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    S. R. Pottasch, Mon. Not. R. Astron. Soc. 125, 543 (1963).ADSCrossRefGoogle Scholar
  8. 8.
    J. M. Laming, Living Rev. Solar Phys. 12, 2 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    K. G. Widing and U. Feldman, Astrophys. J. 555, 426 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    V. Tomozov, Soln.-Zemn. Fiz. 23, 23 (2013).Google Scholar
  11. 11.
    K. H. Schatten, J. M. Wilcox, and N. F. Ness, Solar Phys. 6, 442 (1969).ADSCrossRefGoogle Scholar
  12. 12.
    B. E. Wood, J. M. Laming, and M. Karovska, Astrophys. J. 753, 76 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    D. Brooks, D. Baker, L. van Driel-Gesztelyi, and H. Warren, Nat. Commun. 8, 183 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    A. Buergi and J. Geiss, Solar Phys. 103, 347 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    J. Geiss, G. Gloeckler, and R. von Steiger, Space Sci. Rev. 72, 49 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    R. von Steiger, J. Geiss, G. Gloeckler, and A. B. Galvin, Space Sci. Rev. 72, 71 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    T. L. Duvall, Jr., P. H. Scherrer, L. Svalgaard, and J. M. Wilcox, Solar Phys. 61, 233 (1979).ADSCrossRefGoogle Scholar
  18. 18.
    J. T. Hoeksema, Space Sci. Rev. 72, 137 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    E. S. Vernova, M. I. Tyasto, and D. G. Baranov, Solar Phys. 289, 2845 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    J. M. Laming, J. J. Drake, and K. G. Widing, Astrophys. J. 443, 416 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    N. A. Schwadron, L. A. Fisk, and T. H. Zurbuchen, Astrophys. J. 521, 859 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Laming, Astrophys. J. 614, 1063 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    M. J. Aschwanden, Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd ed. (Springer, Berlin, Heidelberg, 2005).Google Scholar
  24. 24.
    S. V. Shestov, V. M. Nakariakov, A. S. Ulyanov, A. A. Reva, and S. V. Kuzin, Astrophys. J. 840, 64 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Solar–Terrestrial PhysicsSiberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations