Astronomy Reports

, Volume 62, Issue 4, pp 299–308 | Cite as

A Numerical–Analytical Approach to Modeling the Axial Rotation of the Earth

  • Yu. G. Markov
  • V. V. Perepelkin
  • L. V. Rykhlova
  • A. S. Filippova


A model for the non-uniform axial rotation of the Earth is studied using a celestial-mechanical approach and numerical simulations. The application of an approximate model containing a small number of parameters to predict variations of the axial rotation velocity of the Earth over short time intervals is justified. This approximate model is obtained by averaging variable parameters that are subject to small variations due to non-stationarity of the perturbing factors. The model is verified and compared with predictions over a long time interval published by the International Earth Rotation and Reference Systems Service (IERS).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Earth Rotation and Reference Systems Service, IERS Annual Reports. Scholar
  2. 2.
    H. Moritz and I. Müller, Earth Rotation: Theory and Observation (Ungar, New York, 1988).Google Scholar
  3. 3.
    W.H. Munk and G.J.F. MacDonald, The Rotation of the Earth. A Geophysical Discussion (Cambridge Univ. Press, New York, 1960).zbMATHGoogle Scholar
  4. 4.
    D. D. McCarthy and B. J. Luzum, Geophys. J. Int. 114, 341 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    L. D. Akulenko, Yu. G. Markov, and V. V. Perepelkin, Cosmic Res. 47, 417 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    L. D. Akulenko, Yu. G. Markov, and V. V. Perepelkin, Dokl. Phys. 56, 294 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    L. D. Akulenko, Yu. G. Markov, V. V. Perepelkin, L. V. Rykhlova, and A. S. Filippova, Astron. Rep. 57, 391 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    N. S. Sidorenkov, Physics of the Earth’s Rotation Instabilities (Nauka, Moscow, 2002) [in Russian].Google Scholar
  9. 9.
    G. Petit and B. Luzum, IERS Conventions (Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt am Main, 2010).Google Scholar
  10. 10.
    M. Kalarus, H. Schuh, W. Kosek, O. Akyilmaz, et al., J. Geodesy 84 (10), 587 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    V. Tissen, A. Tolstikov, and Z. Malkin, Artif. Satell. 45 (2), 111 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    Z. Malkin, Artif. Satell. 45 (2), 87 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    A. P. Freedman, J. A. Steppe, J. O. Dickey, T. M. Eubanks, and L.-Y. Sung, J. Geophys. Res. 99 (B4), 6981 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    L. D. Akulenko, M. L. Kiselev, and Yu. G. Markov, Kosmonavt. Raketostroen. 65 (4), 13 (2011).Google Scholar
  15. 15.
    V. S. Gubanov, Generalized Least Squares Method. Theory and Application in Astrometry (Nauka, St. Petersburg, 1997) [in Russian].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. G. Markov
    • 1
  • V. V. Perepelkin
    • 1
  • L. V. Rykhlova
    • 2
  • A. S. Filippova
    • 1
  1. 1.Moscow Institute of AviationMoscowRussia
  2. 2.Institute of AstronomyRussian Academy of SciencesMoscowRussia

Personalised recommendations