Astronomy Reports

, Volume 62, Issue 4, pp 251–263 | Cite as

Large-scale Instability during Gravitational Collapse with Neutrino Transport and a Core-Collapse Supernova

Article

Abstract

Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Baade and F. Zwicky, Proc. Natl. Acad. Sci. 20, 254 (1934).ADSCrossRefGoogle Scholar
  2. 2.
    W. Baade and F. Zwicky, Proc. Natl. Acad. Sci. 20, 259 (1934).ADSCrossRefGoogle Scholar
  3. 3.
    H. Bethe and R. Peierls, Nature 133, 532 (1934).ADSCrossRefGoogle Scholar
  4. 4.
    G. Gamow and M. Schoenberg, Phys. Rev. 59, 539 (1941).ADSCrossRefGoogle Scholar
  5. 5.
    D. K. Nadezhin and V. M. Chechetkin, Sov. Astron. 13, 213 (1969).ADSGoogle Scholar
  6. 6.
    H.-T. Janka, Ann. Rev. Nucl. Part. Sci. 62, 407 (2012); arXiv: 1206.2503.ADSCrossRefGoogle Scholar
  7. 7.
    S. J. Smartt, Ann. Rev. Astron. Astrophys. 47, 63 (2009); arXiv: 0908.0700.ADSCrossRefGoogle Scholar
  8. 8.
    A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hüdepohl, and S. Chakraborty, Nuovo Cimento Riv. Ser. 39, 1 (2016); arXiv: 1508.00785.ADSGoogle Scholar
  9. 9.
    W. A. Fowler and F. Hoyle, Astrophys. J. Suppl. 9, 201 (1964).ADSCrossRefGoogle Scholar
  10. 10.
    V. S. Imshennik and D. K. Nadezhin, Usp. Fiz. Nauk 156, 561 (1988).CrossRefGoogle Scholar
  11. 11.
    H. A. Bethe, Rev.Mod. Phys. 62, 801 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    H.-T. Janka, K. Langanke, A. Marek, G. Martínez-Pinedo, and B. Müller, Phys. Rep. 442, 38 (2007); arXiv: astro-ph/0612072.ADSCrossRefGoogle Scholar
  13. 13.
    S. A. Colgate and R. H. White, Astrophys. J. 143, 626 (1966).ADSCrossRefGoogle Scholar
  14. 14.
    D. Arnett, Canad. J. Phys. 45, 1621 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    V. S. Imshennik and D. K. Nadezhin, Sov. Phys. JETP 36, 821 (1972).ADSGoogle Scholar
  16. 16.
    D. K. Nadezhin, Astrophys. Space Sci. 49, 399 (1977).ADSCrossRefGoogle Scholar
  17. 17.
    Neutron Stars 1: Equation of State and Structure, Ed. by P. Haensel, A.Y. Potekhin, and D.G. Yakovlev, Astrophys. Space Sci. Lib. 326, 1 (2007).Google Scholar
  18. 18.
    S.W. Bruenn, Astrophys. J. Suppl. 58, 771 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    M. L. Alme and J. R. Wilson, Astrophys. J. 186, 1015 (1973).ADSCrossRefGoogle Scholar
  20. 20.
    L. Dessart, A. Burrows, E. Livne, and C. D. Ott, Astrophys. J. 673, L43 (2008); arXiv: 0710.5789.ADSCrossRefGoogle Scholar
  21. 21.
    F. D. Swesty and E. S. Myra, Astrophys. J. Suppl. 181, 1 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    B. Müller, H.-T. Janka, and H. Dimmelmeier, Astrophys. J. Suppl. 189, 104 (2010); arXiv: 1001.4841.ADSCrossRefGoogle Scholar
  23. 23.
    A. Mezzacappa and S.W. Bruenn, Astrophys. J. 405, 637 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    A. Mezzacappa and S.W. Bruenn, Astrophys. J. 405, 669 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    A. Mezzacappa and S.W. Bruenn, Astrophys. J. 410, 740 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    A. Mezzacappa, M. Liebendörfer, O. E. Messer, W.R. Hix, F.-K. Thielemann, and S.W. Bruenn, Phys. Rev. Lett. 86, 1935 (2001); arXiv: astro-ph/0005366.ADSCrossRefGoogle Scholar
  27. 27.
    E. J. Lentz, A. Mezzacappa, O. E. B. Messer, M. Liebendörfer, W. R. Hix, and S. W. Bruenn, Astrophys. J. 747, 73 (2012); arXiv: 1112.3595.ADSCrossRefGoogle Scholar
  28. 28.
    M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and S. A. Colgate, Astrophys. J. 435, 339 (1994); arXiv: astro-ph/9404024.ADSCrossRefGoogle Scholar
  29. 29.
    A. Burrows, J. Hayes, and B. A. Fryxell, Astrophys. J. 450, 830 (1995); arXiv: astro-ph/9506061.ADSCrossRefGoogle Scholar
  30. 30.
    J. W. Murphy and C. Meakin, Astrophys. J. 742, 74 (2011); arXiv: 1106.5496.ADSCrossRefGoogle Scholar
  31. 31.
    J. C. Dolence, A. Burrows, and W. Zhang, Astrophys. J. 800, 10 (2015); arXiv: 1403.6115.ADSCrossRefGoogle Scholar
  32. 32.
    S. M. Couch and C. D. Ott, Astrophys. J. 778, L7 (2013); arXiv: 1309.2632.ADSCrossRefGoogle Scholar
  33. 33.
    A. Wongwathanarat, E. Müller, and H.-T. Janka, Astron. Astrophys. 577, id. A48 (2015); arXiv: 1409.5431.Google Scholar
  34. 34.
    S. M. Couch and C. D. Ott, Astrophys. J. 799, id. 5 (2015); arXiv: 1408.1399.Google Scholar
  35. 35.
    D. Radice, C. D. Ott, E. Abdikamalov, S. M. Couch, R. Haas, and E. Schnetter, Astrophys. J. 820, 76 (2016); arXiv: 1510.05022.ADSCrossRefGoogle Scholar
  36. 36.
    V.M. Chechetkin, S. D. Ustyugov, A. A. Gorbunov, and V. I. Polezhaev, Astron. Lett. 23, 30 (1997).ADSGoogle Scholar
  37. 37.
    V. M. Suslin, S. D. Ustyugov, V. M. Chechetkin, and G. P. Churkina, Astron. Rep. 45, 241 (2001).ADSCrossRefGoogle Scholar
  38. 38.
    V. M. Suslin, M. Yu. Khlopov, V. M. Chechetkin, and V. A. Chuyanov, Astron. Rep. 40, 358 (1996).ADSGoogle Scholar
  39. 39.
    I. V. Baikov, V. M. Suslin, V.M. Chechetkin, V. Bychkov, and L. Stenflo, Astron. Rep. 51, 274 (2007).ADSCrossRefGoogle Scholar
  40. 40.
    A. Burrows, Astrophys. J. 318, L57 (1987).ADSCrossRefGoogle Scholar
  41. 41.
    R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, and A. Ciocio, Phys. Rev. Lett. 58, 1494 (1987).ADSCrossRefGoogle Scholar
  42. 42.
    K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, and Y. Oyama, Phys. Rev. Lett. 58, 1490 (1987).ADSCrossRefGoogle Scholar
  43. 43.
    E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, and I. V. Krivosheika, JETP Lett. 45, 589 (1987).ADSGoogle Scholar
  44. 44.
    R. Schaeffer, Y. Declais, and S. Jullian, Nature 330, 142 (1987).ADSCrossRefGoogle Scholar
  45. 45.
    M. V. Popov, A. A. Filina, A. A. Baranov, P. Chardonnet, and V. M. Chechetkin, Astrophys. J. 783, 43 (2014).ADSCrossRefGoogle Scholar
  46. 46.
    J. I. Castor, Astrophys. J. 178, 779 (1972).ADSCrossRefGoogle Scholar
  47. 47.
    D. L. Tubbs and D. N. Schramm, Astrophys. J. 201, 467 (1975).ADSCrossRefGoogle Scholar
  48. 48.
    A. G. Aksenov, Astron. Lett. 24, 482 (1998).ADSGoogle Scholar
  49. 49.
    A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 56, 193 (2012).ADSCrossRefGoogle Scholar
  50. 50.
    G. V. Vereshchagin and A. G. Aksenov, Relativistic Kinetic Theory: With Applications in Astrophysics and Cosmology (Cambridge Univ. Press, Cambridge, 2017).CrossRefMATHGoogle Scholar
  51. 51.
    A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, Phys. Rev. D 79, 043008 (2009); arXiv: 0901.4837.ADSCrossRefGoogle Scholar
  52. 52.
    A. G. Aksenov and V. M. Chechetkin, Yad. Fiz. 81 (1) (2018, in press).Google Scholar
  53. 53.
    I. V. Baikov and V. M. Chechetkin, Astron. Rep. 48, 229 (2004).ADSCrossRefGoogle Scholar
  54. 54.
    A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 58, 442 (2014).ADSCrossRefGoogle Scholar
  55. 55.
    S.W. Bruenn, Phys. Rev. Lett. 59, 938 (1987).ADSCrossRefGoogle Scholar
  56. 56.
    P. Ledoux, Astrophys. J. 105, 305 (1947).ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    G. S. Bisnovatyi-Kogan, Physical Problems in the Theory of Stellar Evolution (Nauka, Moscow, 1989) [in Russian].MATHGoogle Scholar
  58. 58.
    A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 60, 655 (2016).ADSCrossRefGoogle Scholar
  59. 59.
    K. Kotake, S. Yamada, and K. Sato, Astrophys. J. 595, 304 (2003).ADSCrossRefGoogle Scholar
  60. 60.
    A. G. Aksenov, Comput.Math. Math. Phys. 55, 1752 (2015).MathSciNetCrossRefGoogle Scholar
  61. 61.
    A. G. Aksenov, V. F. Tishkin, and V. M. Chechetkin, Mat. Model., in press.Google Scholar
  62. 62.
    A. G. Aksenov, Astron. Lett. 25, 185 (1999).ADSGoogle Scholar
  63. 63.
    G. S. Bisnovatyi-Kogan, Astrophysics 55, 387 (2012); arXiv: 1203.0997.ADSCrossRefGoogle Scholar
  64. 64.
    S. Chandrasekhar and N. R. Lebovitz, Astrophys. J. 138, 185 (1963).ADSCrossRefGoogle Scholar
  65. 65.
    O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence. New Approaches (Nauka, Moscow, 2002; Cambridge Int. Science, Boston, 2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute for Computer Aided DesignRussian Academy of SciencesMoscowRussia
  2. 2.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations