Skip to main content
Log in

Relationship between the Elemental Abundances and the Kinematics of Galactic-Field RR Lyrae Stars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

An Erratum to this article was published on 23 August 2018

This article has been updated

Abstract

Data of our compiled catalog containing the positions, velocities, and metallicities of 415 RR Lyrae variable stars and the relative abundances [el/Fe] of 12 elements for 101 RR Lyrae stars, including four α elements (Mg, Ca, Si, and Ti), are used to study the relationships between the chemical and spatial–kinematic properties of these stars. In general, the dependences of the relative abundances of α elements on metallicity and velocity for the RR Lyrae stars are approximately the same as those for field dwarfs. Despite the usual claim that these stars are old, among them are representatives of the thin disk, which is the youngest subsystem of the Galaxy. Attention is called to the problem of lowmetallicity RR Lyrae stars. Most RR Lyrae stars that have the kinematic properties of thick disk stars have metallicities [Fe/H] < −1.0 and high ratios [α/Fe] ≈ 0.4, whereas only about 10% of field dwarfs belonging to the so-called “low-metallicity tail” have this chemical composition. At the same time, there is a sharp change in [α/Fe] in RR Lyrae stars belonging just to the thick disk, providing evidence for a long period of formation of this subsystem. The chemical compositions of SDSS J1707+58, V455 Oph, MACHO176.18833.411, V456 Ser, and BPSCS 30339–046 do not correspond to their kinematics.While the first three of these stars belong to the halo, according to their kinematics, the last two belong to the thick disk. It is proposed that they are all most likely extragalactic, but the possible appearance of some of them in the solar neighborhood as a result of the gravitational action of the bar on field stars cannot be ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 23 August 2018

    Several errors concerning the single star V455 Oph have been discovered in the study [1], which, however, do not affect the main conclusions of that study. V455 Oph was mistakenly ascribed the elemental composition of a different star. The spectroscopic elemental abundances of the RR Lyrae star V455 Oph were not determined, making it necessary to use the photometric abundance [Fe/H] = −1.42, and not +0.19, as was indicated in the published paper and in the on-line catalog; any reference to the star should be removed from the abstract and text of the paper. The authors apologize for these errors. In particular, the following text should be removed from Section 3 (p. 56): “However, RR Lyrae stars with the kinematics of the accreted halo also include some very metals-rich objects. For example, V455 Oph”… to the end of that paragraph. The second-to-last paragraph of Section 5, beginning “We also consider the chemical composition of V455 Oph to be unique”… should be removed in its entirety. Finally, the points ascribed to V455 Oph in Figs. 1e, 1f, Figs. 2a–2d, and Figs. 3a–3d should be considered erroneous.

References

  1. A. K. Dambis, L. N. Berdnikov, A. Y. Kniazev, V. V. Kravtsov, A. S. Rastorguev, R. Sefako, and O. V. Vozyakova, Mon. Not. R. Astron. Soc. 435, 3206 (2013).

    Article  ADS  Google Scholar 

  2. F. Matteucci, Nature 414, 253 (2001).

    ADS  Google Scholar 

  3. C. J. Hansen, R. M. Rich, A. Koch, S. Xu, A. Kunder, and H.-G. Ludwig, Astron. Astrophys. 590, A39 (2016).

    Article  ADS  Google Scholar 

  4. R. Schonrich, J. Binney, and W. Dehnen, Mon. Not. R. Astron. Soc. 403, 1829 (2010).

    Article  ADS  Google Scholar 

  5. K. Kolenberg, L. Fossati, D. Shulyak, H. Pikall, T. G. Barnes, O. Kochukhov, and V. Tsymbal, Astron. Astrophys. 519, A64 (2010).

    Article  ADS  Google Scholar 

  6. C. Sneden, B.-Q. For, and G. W. Preston, in RR Lyrae Stars, Metal-Poor Stars, and the Galaxy, Ed. by A. McWilliam, Carnegie Observ. Astrophys. Ser. 5, 196 (2011).

  7. B.-Q. For, C. Sneden, and G. W. Preston, Astrophys. J. Suppl. 197, 29 (2011).

    Article  ADS  Google Scholar 

  8. S. Liu, G. Zhao, Y.-Q. Chen, Y. Takeda, and S. Honda, Res. Astron. Astrophys. 13, 1307 (2013).

    Article  ADS  Google Scholar 

  9. R. Kurucz, ATLAS9 Stellar Atmosphere Programs and 2 km/s Grid (Smithsonian Astrophys. Observatory, Cambridge, MA, 1993), Kurucz CD-ROM No. 13.

    Google Scholar 

  10. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Ann. Rev. Astron. Astrophys. 47, 481 (2009).

    Article  ADS  Google Scholar 

  11. M. S. Frolov and N. N. Samus’, Astron. Lett. 24, 171 (1998).

    ADS  Google Scholar 

  12. T. Bensby, S. Feltzing, and M. S. Oey, Astron. Astrophys. 562, A71 (2014).

    Article  ADS  Google Scholar 

  13. T. V. Borkova and V. A. Marsakov, Astron. Rep. 44, 665 (2000).

    Article  ADS  Google Scholar 

  14. T. V. Borkova and V. A. Marsakov, Astron. Rep. 46, 460 (2002).

    Article  ADS  Google Scholar 

  15. V. A. Marsakov and A. A. Suchkov, Sov. Astron. Lett. 2, 148 (1976).

    ADS  Google Scholar 

  16. V. A. Marsakov and A. A. Suchkov, Sov. Astron. 21, 700 (1977).

    ADS  Google Scholar 

  17. T. Bensby, S. Feldzing, and I. Lungstrem, Astron. Astrophys. 410, 527 (2003).

    Article  ADS  Google Scholar 

  18. T. V. Borkova and V. A. Marsakov, Astron. Astrophys. 398, 133 (2003).

    Article  ADS  Google Scholar 

  19. V. A. Marsakov and T. V. Borkova, Astron. Lett. 31, 515 (2005).

    Article  ADS  Google Scholar 

  20. J. X. Prochaska, S. O. Naumov, B. W. Carney, A. McWilliam, and A. M. Wolfe, Astron. J. 120, 2513 (2000).

    Article  ADS  Google Scholar 

  21. T. D. Kinman, W. Aoki, T. C. Beers, and W. R. Brown, Astrophys. J. 755, L18 (2012).

    Article  ADS  Google Scholar 

  22. J. F. Navarro, A. Helmi, and K. C. Freeman, Astrophys. J. 601, L43 (2004).

    Article  ADS  Google Scholar 

  23. V. A. Marsakov and T. V. Borkova, Astron. Lett. 32, 545 (2006).

    Article  ADS  Google Scholar 

  24. O. J. Eggen and A. R. Sandage, Mon. Not. R. Astron. Soc. 119, 255 (1959).

    Article  ADS  Google Scholar 

  25. E. Pancino, N. Britavskiy, D. Romano, C. Cacciari, A. Mucciarelli, and G. Clementini, Mon. Not. R. Astron. Soc. 447, 2404 (2015).

    Article  ADS  Google Scholar 

  26. J. Govea, T. Gomez, G. W. Preston, and C. Sneden, Astrophys. J. 782, 59 (2014).

    Article  ADS  Google Scholar 

  27. S. M. Andrievsky, V. V. Kovtyukh, G. Wallerstein, S. A. Korotin, and W. Huang, Publ. Astron. Soc. Pacif. 122, 877 (2010).

    Article  ADS  Google Scholar 

  28. M. Haywood, P. di Matteo, M. D. Lehnert, D. Katz, and A. Gómez, Astron. Astrophys. 560, 109 (2013).

    Article  Google Scholar 

  29. B. E. Reddy, D. L. Lambert, and C. Allende Prieto, Mon. Not. R. Astron. Soc. 367, 1329 (2006).

    Article  ADS  Google Scholar 

  30. A. Kunder, R. M. Rich, K. Hawkins, R. Poleski, et al., Astrophys. J. 808, 12 (2015).

    Article  ADS  Google Scholar 

  31. M. Marconi, G. Coppola, G. Bono, V. Braga, et al., Astrophys. J. 808, 50 (2015).

    Article  ADS  Google Scholar 

  32. J. D. Fernie, B. Beattie, N. R. Evans, and S. Seager, Inform. Bull. Var. Stars, No. 4148 (1995).

    Google Scholar 

  33. C. Travaglio, D. Galli, R. Gallino, M. Busso, F. Ferrini, and O. Straniero, Astrophys. J. 521, 691 (1999).

    Article  ADS  Google Scholar 

  34. J. Köppen, C. Weidner, and P. Kroupa, Mon. Not. R. Astron. Soc. 375, 673 (2007).

    Article  ADS  Google Scholar 

  35. M. G. Abadi, M. G. Navarro, M. Steinmetzand, and V. R. Eke, Astrophys. J. 591, 499 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Marsakov.

Additional information

Original Russian Text © V.A. Marsakov, M.L. Gozha, V.V. Koval, 2018, published in Astronomicheskii Zhurnal, 2018, Vol. 95, No. 1, pp. 54–67.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsakov, V.A., Gozha, M.L. & Koval, V.V. Relationship between the Elemental Abundances and the Kinematics of Galactic-Field RR Lyrae Stars. Astron. Rep. 62, 50–62 (2018). https://doi.org/10.1134/S1063772918010055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918010055

Navigation