Skip to main content
Log in

Can Superflares Occur on the Sun? A View from Dynamo Theory

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Recent data from the Kepler mission has revealed the occurrence of superflares in Sun-like stars which exceed by far any observed solar flares in released energy. Radionuclide data do not provide evidence for occurrence of superflares on the Sun over the past eleven millennia. Stellar data for a subgroup of superflaring Kepler stars are analysed in an attempt to find possible progenitors of their abnormal magnetic activity. A natural idea is that the dynamo mechanism in superflaring stars differs in some respect from that in the Sun. We search for a difference in the dynamo-related parameters between superflaring stars and the Sun to suggest a dynamo mechanism as close as possible to the conventional solar/stellar dynamo but capable of providing much higher magnetic energy. Dynamo based on joint action of differential rotation and mirror asymmetric motions can in principle result in excitation of two types of magnetic fields. First of all, it is well-known in solar physics dynamo waves. The point is that another magnetic configuration with initial growth and further stabilisation can also be excited. For comparable conditions, magnetic field of second configuration is much stronger than that of the first one just because dynamo does not spend its energy for periodic magnetic field inversions but uses it for magnetic field growth. We analysed available data from the Kepler mission concerning the superflaring stars in order to find tracers of anomalous magnetic activity. As suggested in a recent paper [1], we find that anti-solar differential rotation or anti-solar sign of the mirror-asymmetry of stellar convection can provide the desired strong magnetic field in dynamo models. We confirm this concept by numerical models of stellar dynamos with corresponding governing parameters. We conclude that the proposed mechanism can plausibly explain the superflaring events at least for some cool stars, including binaries, subgiants and, possibly, low-mass stars and young rapid rotators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Kitchatinov and S. V. Olemskoy, Mon. Not. R. Astron. Soc. 459, 4353 (2016).

    Article  ADS  Google Scholar 

  2. D. G. Koch, W. J. Borucki, G. Basri, N. M. Batalha, et al., Astrophys. J. 713, L79 (2010).

    Article  ADS  Google Scholar 

  3. H. Maehara, T. Shibayama, S. Notsu, Y. Notsu, et al., Nature 485, 478 (2012).

    Article  ADS  Google Scholar 

  4. T. Shibayama, H. Maehara, S. Notsu, Y. Notsu, et al., Astrophys. J. Suppl. 209, 5 (2013).

    Article  ADS  Google Scholar 

  5. D. Nogami, Y. Notsu, S. Honda, H. Maehara, et al., Publ. Astron. Soc. Jpn. 66, L4 (2014).

    Article  ADS  Google Scholar 

  6. G. Aulanier, P. Démoulin, C. J. Schrijver, M. Janvier, E. Pariat, and B. Schmieder, Astron. Astrophys. 549, id. A66 (2013).

    Article  ADS  Google Scholar 

  7. I. G. Usoskin, B. Kromer, F. Ludlow, J. Beer, M. Friedrich, G. A. Kovaltsov, S. K. Solanki, and L. Wacker, Astron. Astrophys. 552, L3 (2013).

    Article  ADS  Google Scholar 

  8. F. Mekhaldi, R. Muscheler, F. Adolphi, A. Aldahan, et al., Nat. Commun. 6, 8611 (2015).

    Article  Google Scholar 

  9. K. Shibata, H. Isobe, A. Hiller, A. R. Choudhuri, et al., Publ. Astron. Soc. Jpn. 65, 49 (2013).

    Article  ADS  Google Scholar 

  10. H. S. Hudson, Nat. Phys. 6, 637 (2010).

    Article  Google Scholar 

  11. C. J. Schrijver, J. Beer, U. Baltensperger, E. W. Cliver, et al., J. Geophys. Res., Space Phys. 117, A08103 (2012).

    Article  ADS  Google Scholar 

  12. G. A. Kovaltsov and I. G. Usoskin, Solar Phys. 289, 211 (2014).

    Article  ADS  Google Scholar 

  13. S. Candelaresi, A. Hillier, H. Maehara, A. Brandenburg, and K. Shibata, Astrophys. J. 792, 67 (2014).

    Article  ADS  Google Scholar 

  14. L. A. Balona and O. P. Abedigamba, Mon. Not. R. Astron. Soc. 461, 497 (2016).

    Article  ADS  Google Scholar 

  15. J. Beer, K. McCracken, and R. von Steiger, Cosmogenic Radionuclides: Theory and Applications in the Terrestrial and Space Enviroments (Springer, Berlin, 2012).

    Book  Google Scholar 

  16. I. G. Usoskin, Living Rev. Solar. Phys. 14, 3 (2017).

    Article  ADS  Google Scholar 

  17. I. G. Usoskin, S. K. Solanki, G. A. Kovaltsov, J. Beer, and B. Kromer, Geophys. Res. Lett. 33, 8107 (2006).

    Article  ADS  Google Scholar 

  18. F. Miyake, K. Nagaya, K. Masuda, and T. Nakamura, Nature 486, 240 (2012).

    ADS  Google Scholar 

  19. I. G. Usoskin and G. A. Kovaltsov, Astrophys. J. 757, 92 (2012).

    Article  ADS  Google Scholar 

  20. A. J. T. Jull, I. P. Panyushkina, T. E. Lange, V. V. Kukarskih, et al., Geophys. Res. Lett. 41, 3004 (2014).

    Article  ADS  Google Scholar 

  21. D. Güttler, F. Adolphi, J. Beer, N. Bleicher, et al., Earth Planet. Sci. Lett. 411, 290 (2015).

    Article  ADS  Google Scholar 

  22. M. Sigl, M. Winstrup, J. R. McConnell, K. C. Welten, et al., Nature 523, 543 (2015).

    Article  ADS  Google Scholar 

  23. F. Miyake, K. Masuda, and T. Nakamura, Nat. Commun. 4, 1748 (2013).

    Article  ADS  Google Scholar 

  24. E. W. Cliver and W. F. Dietrich, J. Space Weath. Space Climat 3, A31 (2013).

    Article  ADS  Google Scholar 

  25. F. Miyake, A. J. T. Jull, I. P. Panyushkina, L. Wacker, et al., Proc. Natl. Acad. Sci. 114, 881 (2017).

    Article  ADS  Google Scholar 

  26. T. Sukhodolov, I. Usoskin, E. Rozanov, et al., Sci. Rep. 7, 45257 (2017).

    Article  ADS  Google Scholar 

  27. M. A. Livshits, G. V. Rudenko, M. M. Katsova, and I. I. Myshyakov, Adv. Space Res. 55, 920 (2015).

    Article  ADS  Google Scholar 

  28. S. C. Marsden, P. Petit, S. V. Jeffers, J. Morin, et al., Mon. Not. R. Astron. Soc. 444, 3517 (2014).

    Article  ADS  Google Scholar 

  29. M. M. Katsova and M. A. Livshits, Solar Phys. 290, 3663 (2015).

    Article  ADS  Google Scholar 

  30. F. Krause and K.-H. Rädler, Mean-Field Magnetohydrodynamics and Dynamo Theory (Akademie, Berlin, 1980).

    MATH  Google Scholar 

  31. D. Moss, Mon. Not. R. Astron. Soc. 306, 300 (1999).

    Article  ADS  Google Scholar 

  32. L. Jouve, A. S. Brun, R. Arlt, A. Brandenburg, et al., Astron. Astrophys. 483, 949 (2008).

    Article  ADS  Google Scholar 

  33. L. L. Kitchatinov, Astron. Lett. 28, 626 (2002).

    Article  ADS  Google Scholar 

  34. L. A. Balona, Mon. Not. R. Astron. Soc. 447, 2714 (2015).

    Article  ADS  Google Scholar 

  35. P. Baize, J. Obs. 37, 73 (1954).

    ADS  Google Scholar 

  36. T. Reinhold, A. Reiners, and G. Basri, Astron. Astrophys. 560, A4 (2013).

    Article  ADS  Google Scholar 

  37. L. A. Balona, A.-M. Broomhall, A. Kosovichev, V. M. Nakariakov, C. E. Pugh, and T. Doorsselaere, Mon. Not. R. Astron. Soc. 450, 956 (2015).

    Article  ADS  Google Scholar 

  38. C. E. Pugh, D. J. Armstrong, V. M. Nakariakov, and A.-M. Broomhall, Mon. Not. R. Astron. Soc. 459, 3659 (2016).

    Article  ADS  Google Scholar 

  39. W.-C. Chen, X.-D. Li, and S.-B. Qian, Astrophys. J. 649, 973 (2006).

    Article  ADS  Google Scholar 

  40. D. Moss and I. Tuominen, Astron. Astrophys. 321, 151 (1998).

    ADS  Google Scholar 

  41. D. Moss, N. Piskunov, and D. Sokoloff, Astron. Astrophys. 396, 885 (2002).

    Article  ADS  Google Scholar 

  42. K. G. Strassmeier, in Stars as Suns: Activity, Evolution and Planets, Proceedings of the 219th IAU Symposium, Ed. by A. K. Dupree and A. O. Benz (ASP, San Francisco, 2004), p. 11.

  43. B. B. Karak, P. J. Käpylä, M. J. Käpylä, A. Brandenburg, N. Olspert, and J. Pelt, Astron. Astrophys. 576, A26 (2015).

    Article  ADS  Google Scholar 

  44. H. Maehara, Y. Notsu, S. Notsu, K. Namekata, S. Honda, T. T. Ishii, D. Nogami, and K. Shibata, arXiv:1702.07141 (2017).

  45. L. L. Kitchatinov and S. V. Olemskoy, Res. Astron. Astrophys. 15, 1801 (2015).

    Article  ADS  Google Scholar 

  46. E. Distefano, A. C. Lanzafame, A. F. Lanza, S. Messina, and F. Spada, Astron. Astrophys. 591, A43 (2016).

    Article  ADS  Google Scholar 

  47. E. Nagel, S. Czesla, and J. H. M. M. Schmitt, Astron. Astrophys. 590, A47 (2016).

    Article  ADS  Google Scholar 

  48. M. M. Katsova, M. A. Livshits, W. Soon, S. L. Baliunas, and D. D. Sokoloff, New Astron. 15, 274 (2010).

    Article  ADS  Google Scholar 

  49. M. M. Katsova, M. A. Livshits, T. V. Mishenina, and B. A. Nizamov, in Proceedings of the 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, Uppsala, Sweden, June 6–10, 2016 (2016), id. 124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Katsova.

Additional information

Original Russian Text © M.M. Katsova, L.L. Kitchatinov, M.A. Livshits, D.L. Moss, D.D. Sokoloff, I.G. Usoskin, 2018, published in Astronomicheskii Zhurnal, 2018, Vol. 95, No. 1, pp. 78–87.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsova, M.M., Kitchatinov, L.L., Livshits, M.A. et al. Can Superflares Occur on the Sun? A View from Dynamo Theory. Astron. Rep. 62, 72–80 (2018). https://doi.org/10.1134/S106377291801002X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377291801002X

Navigation