Skip to main content
Log in

Pulsations in the atmospheres of hot Jupiters possessing magnetic fields

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The discovery of the possible existence of huge quasi-stationary envelopes around a number of hot Jupiters (i.e., with sizes appreciably exceeding their Roche lobes) and the need to correctly take into account their properties when interpreting observational data require a careful analysis of the main physical processes influencing their atmospheres. One important factor is the possibility that the planet has a magnetic field. It was shown earlier that the presence of even a modest dipolar magnetic field of a hot Jupiter (with a magnetic moment approximately 1/10 the magnetic moment of Jupiter) influences the properties of the planetary atmosphere, in particular, leading to expansion of the range of parameters for which a giant, quasi-closed envelope can form around the planet. It was also established that the presence of a planetary magnetic field reduced the mass-loss rate from the envelope, since matter flowing out from the inner Lagrange point moves perpendicular to the field lines. Three-dimensional magnetohydrodynamical (MHD) modeling on time scales appreciably exceeding the time for the formation of the envelope show that pulsations arise in the atmospheres of hot Jupiters possessing dipolar magnetic fields, with characteristic periods ~0.27Porb. This behavior is easy to understand physically, since even in the case of a spherical atmosphere, the continuous expansion of the ionized atmsphere of a hot Jupiter can lead to the accumulation of matter in regions bounded by closed field lines, and to the periodic rupture of the atmosphere beyond the magnetic field. In the case considered, when the system contains a giant envelope fed by a stream of matter from the inner Lagrange point, the presence of such pulsations gives rise to appreciable variations in the gas-dynamical structure of the flow. In particular, pulsations of the atmosphere lead to tearing off of part of the flow and sharp fluctuations in the size of the envelope, leading to variations in the envelope’s observational properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Fossati, C. A. Haswell, C. S. Froning, L. Hebb, et al., Astrophys. J. 714, L222 (2010).

    Article  ADS  Google Scholar 

  2. D. V. Bisikalo, P. V. Kaygorodov, and A. S. Arakcheev, Living Together: Planets, Host Stars and Binaries, Ed. by S. M. Rucinski, G. Torres, and M. Zejda, ASP Conf. Ser. 496, 337 (2015).

    ADS  Google Scholar 

  3. D. Bisikalo, P. Kaygorodov, D. Ionov, V. Shematovich, et al., Astrophys. J. 764, 19 (2013).

    Article  ADS  Google Scholar 

  4. D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).

    Article  ADS  Google Scholar 

  5. K. G. Kislyakova, M. Holmström, H. Lammer, P. Odert, et al., Science 346, 981 (2014).

    Article  ADS  Google Scholar 

  6. J. E. Owen and F. C. Adams, Mon. Not. R. Astron. Soc. 444, 3761 (2014).

    Article  ADS  Google Scholar 

  7. T.Matsakos, A. Uribe, and A. Königl, Astron. Astrophys. 578, A6 (2015).

    Article  Google Scholar 

  8. D. J. Stevenson, Rep. Prog. Phys. 46, 555 (1983).

    Article  ADS  Google Scholar 

  9. A. S. Arakcheev, A. G. Zhilkin, and P. V. Kaigorodov, Astron. Rep. (2017, in press).

    Google Scholar 

  10. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, and P. A. Prokopov, Astrophys. J. 813, 50 (2015).

    Article  ADS  Google Scholar 

  11. T. Chan, M. Ingemyr, J. N. Winn, M. J. Holman, et al., Astron. J. 141, 179 (2011).

    Article  ADS  Google Scholar 

  12. R. V. Yelle, Icarus 170, 167 (2004).

    Article  ADS  Google Scholar 

  13. T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).

    Article  ADS  Google Scholar 

  14. T. T. Koskinen, R. V. Yelle, M. J. Harris, and P. Lavvas, Icarus 226, 1695 (2013).

    Article  ADS  Google Scholar 

  15. G. L. Withbroe, Astrophys. J. 325, 442 (1988).

    Article  ADS  Google Scholar 

  16. J. D. Nichols, G. A. Wynn, M. Goad, R. D. Alexander, et al., Astrophys. J. 803, 9 (2015).

    Article  ADS  Google Scholar 

  17. C. A. Haswell, L. Fossati, T. Ayres, K. France, et al., Astrophys. J. 760, 79 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Bisikalo.

Additional information

Original Russian Text © D.V. Bisikalo, A.S. Arakcheev, P.V. Kaigorodov, 2017, published in Astronomicheskii Zhurnal, 2017, Vol. 94, No. 11, pp. 920–926.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisikalo, D.V., Arakcheev, A.S. & Kaigorodov, P.V. Pulsations in the atmospheres of hot Jupiters possessing magnetic fields. Astron. Rep. 61, 925–931 (2017). https://doi.org/10.1134/S1063772917110026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772917110026

Navigation