Skip to main content
Log in

Reduction of mass loss by the hot Jupiter WASP-12b due to its magnetic field

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The influence of the dipolar magnetic field of a “hot Jupiter” with the parameters of the object WASP-12b on the mass-loss rate from its atmosphere is investigated. The results of three-dimensional gas-dynamical and magnetohydrodynamical computations show that the presence of a magnetic moment with a strength of ~0.1 the magnetic moment of Jupiter leads to appreciable variations of the matter flow structure. For example, in the case of the exoplanet WASP-12b with its specified set of atmospheric parameters, the stream from the vicinity of the Lagrange point L1 is not stopped by the dynamical pressure of the stellar wind, and the envelope remains open. Including the effect of the magnetic field leads to a variation in this picture—the atmosphere becomes quasi-closed, with a characteristic size of order 14 planetary radii, which, in turn, substantially decreases the mass-loss rate by the exoplanet atmosphere (by~70%). This reduction of the mass-loss rate due to the influence of the magnetic fieldmakes it possible for exoplanets to form closed and quasi-closed envelopes in the presence of more strongly overflowing Roche lobes than is possible without a magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Lai, C. Helling, and E. P. J. van den Heuvel, Astrophys. J. 721, 923 (2010).

    Article  ADS  Google Scholar 

  2. S.-L. Li, N. Miller, D. N. C. Lin, and J. J. Fortney, Nature 463, 1054 (2010).

    Article  ADS  Google Scholar 

  3. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Dé-sert, G. E. Ballester, et al., Nature 422, 143 (2003).

    Article  ADS  Google Scholar 

  4. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Dé-sert, G. E. Ballester, et al., Astrophys. J. 676, L57 (2008).

    Article  ADS  Google Scholar 

  5. L. Ben-Jaffel, Astrophys. J. 671, L61 (2007).

    Article  ADS  Google Scholar 

  6. A. Vidal-Madjar, J.-M. Désert, A. Lecavelier des Etangs, G. Hébrard, et al., Astrophys. J. 604, L69 (2004).

    Article  ADS  Google Scholar 

  7. L. Ben-Jaffel and S. Sona Hosseini, Astrophys. J. 709, 1284 (2010).

    Article  ADS  Google Scholar 

  8. J. L. Linsky, H. Yang, K. France, C. S. Froning, et al., Astrophys. J.. 717, 1291 (2010).

    Article  ADS  Google Scholar 

  9. L. Fossati, C. A. Haswell, C. S. Froning, L. Hebb, et al., Astrophys. J. 714, L222 (2010).

    Article  ADS  Google Scholar 

  10. J. D. Nichols, G. A. Wynn, M. Goad, R. D. Alexander, et al., Astrophys. J. 803, 9 (2015).

    Article  ADS  Google Scholar 

  11. R. V. Yelle, Icarus 170, 167 (2004).

    Article  ADS  Google Scholar 

  12. A. GarcíaMuñoz, Planet. Space Sci. 55, 1426 (2007).

    Article  ADS  Google Scholar 

  13. R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).

    Article  ADS  Google Scholar 

  14. T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).

    Article  ADS  Google Scholar 

  15. T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, arXiv:1210.1536 [astro-ph.EP] (2012).

  16. D. V. Bisikalo, P. V. Kaygorodov, D. E. Ionov, and V. I. Shematovich, in Characterizing Stellar and Exoplanetary Environments, Ed. by H. Lammer and M. Khodachenko, Astrophys. Space Sci. Lib. 411, 81 (2015).

    Article  ADS  Google Scholar 

  17. D. E. Ionov, V. I. Shematovich, and Ya. N. Pavlyuchenkov, Astron. Rep. 61, 387 (2017).

    Article  ADS  Google Scholar 

  18. D. Bisikalo, P. Kaygorodov, D. Ionov, V. Shematovich, et al., Astrophys. J. 764, 19 (2013).

    Article  ADS  Google Scholar 

  19. D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).

    Article  ADS  Google Scholar 

  20. A. A. Cherenkov, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 58, 679 (2014).

    Article  ADS  Google Scholar 

  21. D. V. Bisikalo, A. A. Cherenkov, and P.V. Kaygorodov, in Solar and Stellar Flares and Their Effects on Planets, IAU Symp. 320, 224 (2016).

    ADS  Google Scholar 

  22. D. V. Bisikalo and A. A. Cherenkov, Astron. Rep. 60, 183 (2016).

    Article  ADS  Google Scholar 

  23. D. V. Bisikalo, P. V. Kaygorodov, and A. S. Arakcheev, in Living Together: Planets, Host Stars and Binaries, Ed. by S. M. Rucinski, G. Torres, and M. Zejda, ASP Conf. Ser. 496, 337 (2015).

    ADS  Google Scholar 

  24. A. P. Showman and T. Guillot, Astron. Astrophys. 385, 166 (2002).

    Article  ADS  Google Scholar 

  25. D. J. Stevenson, Rep. Prog. Phys. 46, 555 (1983).

    Article  ADS  Google Scholar 

  26. J.-M. Grießmeier, A. Stadelmann, T. Penz, H. Lammer, et al., Astron. Astrophys. 425, 753 (2004).

    Article  ADS  Google Scholar 

  27. A. Sańchez-Lavega, Astrophys. J. 609, L87 (2004).

    Article  ADS  Google Scholar 

  28. K. G. Kislyakova, M. Holmström, H. Lammer, P. Odert, et al., Science 346, 981 (2014).

    Article  ADS  Google Scholar 

  29. T. T. Koskinen, J. Y.-K. Cho, N. Achilleos, and A. D. Aylward, Astrophys. J. 722, 178 (2010).

    Article  ADS  Google Scholar 

  30. G. B. Trammell, P. Arras, and Z.-Y. Li, Astrophys. J. 728, 152 (2011).

    Article  ADS  Google Scholar 

  31. I. F. Shaikhislamov, M. L. Khodachenko, Y. L. Sasunov, H. Lammer, et al., Astrophys. J. 795, 132 (2014).

    Article  ADS  Google Scholar 

  32. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, and P. A. Prokopov, Astrophys. J. 813, 50 (2015).

    Article  ADS  Google Scholar 

  33. G. B. Trammell, Z.-Y. Li, and P. Arras, Astrophys. J. 788, 161 (2014).

    Article  ADS  Google Scholar 

  34. T.Matsakos, A. Uribe, and A. Königl, Astron. Astrophys. 578, A6 (2015).

    Article  Google Scholar 

  35. S. K. Godunov, Mat. Sb. 447, 271 (1959).

    Google Scholar 

  36. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  37. A. A. Harten, J. Comp. Phys. 49, 357 (1983).

    Article  ADS  Google Scholar 

  38. T. Chan, M. Ingemyr, J. N. Winn, M. J. Holman, et al., Astron. J. 141, 179 (2011).

    Article  ADS  Google Scholar 

  39. G. L. Withbroe, Astrophys. J. 325, 442 (1988).

    Article  ADS  Google Scholar 

  40. J. E. Owen and F. C. Adams, Mon. Not. R. Astron. Soc. 444, 3761 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Arakcheev.

Additional information

Original Russian Text © A.S. Arakcheev, A.G. Zhilkin, P.V. Kaigorodov, D.V. Bisikalo, A.G. Kosovichev, 2017, published in Astronomicheskii Zhurnal, 2017, Vol. 94, No. 11, pp. 927–937.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arakcheev, A.S., Zhilkin, A.G., Kaigorodov, P.V. et al. Reduction of mass loss by the hot Jupiter WASP-12b due to its magnetic field. Astron. Rep. 61, 932–941 (2017). https://doi.org/10.1134/S1063772917110014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772917110014

Navigation