Skip to main content
Log in

The evolution of stars paired with supermassive black holes

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A star located in the close vicinity of a supermassive black hole (SMBH) in a galactic nucleus or a globular-cluster core could form a close binary with the SMBH, with the star possibly filling its Roche lobe. The evolution of such binary systems is studied assuming that the SMBH mainly accretes matter from the companion star and that the presence of gas in the vicinity of the SMBH does not appreciably influence variations in the star’s orbit. The evolution of the star–SMBH system is mainly determined by the same processes as those determining the evolution of ordinary binaries. The main differences are that the star is subject to an incident flux of hard radiation arising during the accretion of matter by the SMBH, and, in detached systems, the SMBH captures virtually all the wind emitted by its stellar companion, which appreciably influences the evolution of the major axis of the orbit. Moreover, the exchange between the orbital angular momentum and the angular momentum of the overflowing matter may not be entirely standard in such systems. The computations assume that there will be no such exchange of angular momentum if the characteristic timescale for mass transfer is shorter than the thermal time scale of the star. The absorption of external radiation in the stellar envelope was computed using the same formalism applied when computing the opacity of the stellar matter. The numerical simulations show that, with the adopted assumptions, three types of evolution are possible for such a binary system, depending on the masses and the initial separation of the SMBH and star. Type I evolution leads to the complete destruction of the star. Only this type of evolution is realized for low-mass main-sequence (MS) stars, even those with large initial separations from their SMBHs. Massive MS stars will also be destroyed if the initial separation is sufficiently small. However, two other types of evolution are possible for massive stars, with a determining role in the time variations of the parameters of the star–SMBH system being played by the possible growth of the massive star into a red giant during the time it is located in the close vicinity of the SMBH. Type II evolution can be realized for massive MS stars that are initially farther from the SMBH than in the case of disruption. In this case, the massive star fills its Roche lobe during its expansion, but is not fully destroyed; the star retreats inside its Roche lobe after a period of intense mass loss. This type of evolution is characterized by an increase in the orbital period of the system with time. As a result, the remnant of the star (its former core) is preserved as a white dwarf, and can end up at a fairly large distance from the SMBH. Type III evolution can be realized formassiveMSstars that are initially located still farther from their SMBHs, and also for massive stars that are already evolved at the initial time. In these cases, the star moves away from the SMBH without filling its Roche lobe, due to its intense stellar wind. The remnants of such stars can also end up at a fairly large distances from their SMBHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Chao, W. Bian, and K. Huang, Adv. Space Res. 42, 544 (2008).

    Article  ADS  Google Scholar 

  2. Y. Wang, T. Yamada, and Y. Taniguchi, Astrophys. J. 588, 113 (2003).

    Article  ADS  Google Scholar 

  3. C. L. Steinhardt and M. Elvis, Mon. Not. R. Astron. Soc. 402, 2637 (2010).

    Article  ADS  Google Scholar 

  4. Y. Shen, Astrophys. J. 704, 89 (2009).

    Article  ADS  Google Scholar 

  5. K. E. K. Coppin, A. M. Swinbank, R. Neri, P. Cox, D. M. Alexander, I. Smail, M. J. Page, J. A. Stevens, K. K. Knudsen, and R. J. Ivison, Mon. Not. R. Astron. Soc. 389, 45 (2008).

    Article  ADS  Google Scholar 

  6. A. E. Broderick and R. Narayan, Astrophys. J. Lett. 638, L21 (2006).

    Article  ADS  Google Scholar 

  7. R. Schodel, A. Feldmeier, N. Neumayer, L. Meyer, and S. Yelda, Class. Quantum Grav. 31, 244007 (2014).

    Article  ADS  Google Scholar 

  8. G. Ghisellini, L. Foschini, M. Volonteri, G. Ghirlanda, F. Haardt, D. Burlon, and F. Tavecchio, Mon. Not. R. Astron. Soc. 399, L24 (2009).

    Article  ADS  Google Scholar 

  9. P. Amaro-Seoane and M. Freitag, Astrophys. J. 653, 53 (2006).

    Article  ADS  Google Scholar 

  10. S. Umbreit, J. M. Fregeau, S. Chatterjee, and F. A. Rasio, Astrophys. J. 750, 31 (2012).

    Article  ADS  Google Scholar 

  11. M. Mapelli, Mon. Not. R. Astron. Soc. 376, 131 (2007).

    Article  ADS  Google Scholar 

  12. P. F. Hopkins, R. S. Somerville, L. Hernquist, T. J. Cox, B. Robertson, and Y. Li, Astrophys. J. 652, 864 (2006).

    Article  ADS  Google Scholar 

  13. W. Oegerle and J. Hill, Astron. J. 122, 2858 (2001).

    Article  ADS  Google Scholar 

  14. H. Loose, E. Krugel, and A. Tutukov, Astron. Astrophys. 105, 342 (1982).

    ADS  Google Scholar 

  15. F. Yusef-Zadeh, M. Wardle, M. Sewilo, D. A. Roberts, I. Smith, R. Arendt, W. Cotton, J. Lacy, S. Martin, M. W. Pound, M. Rickert, and M. Royster, Astrophys. J. 808, 97 (2015).

    Article  ADS  Google Scholar 

  16. L. Young, G. Bendo, and D. Lucero, arXiv:0803. 4510 (2008).

  17. T. Boker, J. Falcon-Barroso, E. Schinnerer, J. H. Knapen, and S. Ryder, in Formation and Evolution of Galaxy Bulges, IAU Symp. 245, 177 (2008).

    ADS  Google Scholar 

  18. A. Venkatesan, R. Schneider, and A. Ferrara, Mon. Not. R. Astron. Soc. 349, L43 (2004).

    Article  ADS  Google Scholar 

  19. M. Wardle and F. Yusef-Zadeh, Astrophys. J. Lett. 683, L37 (2008).

    Article  ADS  Google Scholar 

  20. D. Figer, in Massive Stars: From Pop III and GRBs to the Milky Way, Ed. by M. Livio and E. Villaver (Cambridge Univ. Press, Cambridge, 2009), p. 40.

  21. E. Y. Vilkoviskij and B. Czerny, Astron. Astrophys. 387, 804 (1994).

    Article  ADS  Google Scholar 

  22. B. McKernan, K. E. S. Ford, W. Lyra, H. B. Perets, L. M. Winter, and T. Yaqoob, Mon. Not. R. Astron. Soc. 417, L103 (2011).

    Article  ADS  Google Scholar 

  23. K. Perez, C. J. Hailey, F. E. Bauer, R. A. Krivonos, et al., Nature 520, 646 (2015).

    Article  ADS  Google Scholar 

  24. E. Kara, J. M. Miller, C. Reynolds, and L. Dai, Nature 535, 388 (2016).

    Article  ADS  Google Scholar 

  25. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 53, 410 (2009).

    Article  ADS  Google Scholar 

  26. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 54, 808 (2010).

    Article  ADS  Google Scholar 

  27. P. B. Ivanov, Mon. Not. R. Astron. Soc. 336, 373 (2002).

    Article  ADS  Google Scholar 

  28. P. B. Ivanov and J. C. B. Papaloizou, Astron. Astrophys. 476, 121 (2007).

    Article  ADS  Google Scholar 

  29. L. E. Strubbe and E. Quataert, in Co-Evolution of Central Black Holes and Galaxies, IAU Symp. 267, 337 (2010).

    ADS  Google Scholar 

  30. J. Magorrian and S. Tremaine, Mon. Not. R. Astron. Soc. 309, 447 (1999).

    Article  ADS  Google Scholar 

  31. G. N. Dremova, V. V. Dremov, and A. V. Tutukov, Astron. Rep. 58, 291 (2014).

    Article  ADS  Google Scholar 

  32. T. J. Ponman, A. J. Foster, and R. R. Ross, in 23rd ESLAB Symposium on Two Topics in X-Ray Astronomy, ESA Symp. Proc. 296, 585 (1989).

    ADS  Google Scholar 

  33. P. Podsiadlowski, Nature 350, 136 (1991).

  34. O. Vilhu, E. Ergma, and A. Fedorova, Astron. Astrophys. 291, 842 (1994).

    ADS  Google Scholar 

  35. B. Paczynski, Ann. Rev. Astron. Astrophys. 9, 183 (1971).

    Article  ADS  Google Scholar 

  36. A. V. Tutukov, A. V. Fedorova, E. V. Ergma, and L. R. Yungel’son, Sov. Astron. Lett. 11, 52 (1985).

    ADS  Google Scholar 

  37. A. V. Tutukov, A. V. Fedorova, E. V. Ergma, and L. R. Yungel’son, Astrofizika 24, 85 (1986).

    ADS  Google Scholar 

  38. A. V. Fedorova and E. V. Ergma, Astrophys. Space Sci. 151, 125 (1989).

    Article  ADS  Google Scholar 

  39. A. V. Tutukov and A. V. Fedorova, Sov. Astron. 33, 606 (1989).

    ADS  Google Scholar 

  40. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 46, 765 (2002).

    Article  ADS  Google Scholar 

  41. A. R. King, in Black Holes in Binaries and Galactic, Ed. by L. Kaper, E. P. J. van den Heuvel, and P. A. Woudt (Springer, Berlin, 2001), p. 155.

  42. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Fizmatgiz, Moscow, 1962; Pergamon, Oxford, 1975).

    Google Scholar 

  43. M. J. Rees, Nature 333, 523 (1988).

    Article  ADS  Google Scholar 

  44. J. K. Cannizzo, H. M. Lee, and J. Goodman, Astrophys. J. 351, 38 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fedorova.

Additional information

Original Russian Text © A.V. Tutukov, A.V. Fedorova, 2017, published in Astronomicheskii Zhurnal, 2017, Vol. 94, No. 8, pp. 667–682.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutukov, A.V., Fedorova, A.V. The evolution of stars paired with supermassive black holes. Astron. Rep. 61, 663–677 (2017). https://doi.org/10.1134/S1063772917070095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772917070095

Navigation