Skip to main content
Log in

A search for FK Com candidates using Kepler Space Telescope observations: Analogs of HD 199178

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Analysis of collected photometric observations obtained with the Kepler Space Telescope were used to select and study 33 objects with parameters corresponding to those of the FK Com starHD199178; these can be considered candidate stars of this type. In this final study, the four objects with the best light curves, which show the properties of their regular rotational modulation most clearly, were selected for detailed studies. The photometric analysis is based on all data currently available in the Kepler archive (covering almost four years). The rotational periods and estimated parameters of the objects’ differential rotation are determined, and the longitudes of the dominant active regions on the surfaces found. For all four stars, the spot coverage is approximately 1% of the visible stellar surface area. The rotational periods and data on the stars’masses and radii fromtheMAST catalog are used to determine the rotation velocities projected onto the line of sight, which ranged from 12 to 21 km/s. Further studies will enable definite conclusions about how these stars are related to FK Com stars. If they are ultimately classified as FK Com stars, this will considerably increase the number of this rare type of star and the also number of rapidly rotating, single, late-type giants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 54, 156 (2010).

    Article  ADS  Google Scholar 

  2. V. B. Puzin, I. S. Savanov, and E. S. Dmitrienko, Astron. Rep. 58, 471 (2014).

    Article  ADS  Google Scholar 

  3. T. Hackman, J. Pelt, M. J. Mantere, L. Jetsu, H. Korhonen, T. Granzer, P. Kajatkari, J. Lehtinen, and K. G. Strassmeier, Astron. Astrophys. 553, 40 (2013).

    Article  ADS  Google Scholar 

  4. H. Korhonen, S. V. Berdyugina, T. Hackman, I. V. Ilyin, K. G. Strassmeier, and I. Tuominen, Astron. Astrophys. 476, 881 (2007).

    Article  ADS  Google Scholar 

  5. L. Jetsu, J. Pelt, and I. Tuominen, Astron. Astrophys. 278, 449 (1993).

    ADS  Google Scholar 

  6. B. W. Bopp and R. E. Stencel, Astrophys. J. Lett. 247, L131 (1981).

    Article  ADS  Google Scholar 

  7. D. P. Huenemoerder, Astron. J. 92, 673 (1986).

    Article  ADS  Google Scholar 

  8. L. Jetsu, J. Huovelin, I. Tuominen, O. Vilhu, B. W. Bopp, and V. Piirola, Astron. Astrophys. 236, 423 (1990).

    ADS  Google Scholar 

  9. K. Panov and D. Dimitrov, Astron. Astrophys. 467, 229 (2007).

    Article  ADS  Google Scholar 

  10. I. S. Savanov, Astron. Rep. 53, 1032 (2009).

    Article  ADS  Google Scholar 

  11. K. G. Strassmeier, S. Lupinek, R. S. Dempsey, and J. B. Rice, Astron. Astrophys. 347, 212 (1999).

    ADS  Google Scholar 

  12. T. Hackman, L. Jetsu, and I. Tuominen, Astron. Astrophys. 374, 171 (2001).

    Article  ADS  Google Scholar 

  13. M. R. Sanad and M. Bobrowsky, New Astron. 31, 37 (2014).

    Article  ADS  Google Scholar 

  14. P. Gondoin, Astron. Astrophys. 413, 1095 (2004).

    Article  ADS  Google Scholar 

  15. I. S. Savanov, Astron. Rep. 55, 341 (2011).

    Article  ADS  Google Scholar 

  16. I. S. Savanov, Astron. Rep. 55, 801 (2011).

    Article  ADS  Google Scholar 

  17. I. S. Savanov and E. S. Dmitrienko, Astron. Rep. 55, 890 (2011).

    Article  ADS  Google Scholar 

  18. I. S. Savanov and E. S. Dmitrienko, Astron. Rep. 56, 116 (2012).

    Article  ADS  Google Scholar 

  19. S. S. Vogt, Astrophys. J. 250, 327 (1981).

    Article  ADS  Google Scholar 

  20. I. S. Savanov, Astrophys. Bull. 70, 83 (2015).

    Article  ADS  Google Scholar 

  21. I. S. Savanov and E. S. Dmitrienko, Astron. Rep. 61, 122 (2017).

    Article  ADS  Google Scholar 

  22. I. S. Savanov, Astrophys. Bull. 70, 292 (2015).

    Article  ADS  Google Scholar 

  23. V. B. Puzin, I. S. Savanov, E. S. Dmitrienko, I. I. Romanyuk, E. A. Semenko, I. A. Yakunin, and A. Yu. Burdanov, Astrophys. Bull. 71, 189 (2016).

    Article  ADS  Google Scholar 

  24. J. Tayar, T. Ceillier, D. A. Garcia-Hernandez, N. W. Troup, et al., Astrophys. J. 807, 82 (2015).

    Article  ADS  Google Scholar 

  25. T. Reinhold and L. Gison, Astron. Astrophys. 583, A65 (2015).

    Article  ADS  Google Scholar 

  26. J. R. Barnes, A. Colier Cameron, J.-F. Donati, D. J. James, S. C. Marsden, and P. Petit, Mon. Not. R. Astron. Soc. 357, L1 (2005).

    Article  ADS  Google Scholar 

  27. M. Kukera and G. Rudiger, Astron. Nachr. 332, 933 (2011).

    Article  ADS  Google Scholar 

  28. I. S. Savanov and K. G. Strassmeier, Astron. Nachr. 329, 364 (2008).

    Article  ADS  Google Scholar 

  29. A. D. Costa, B. L. Canto Martins, J. P. Bravo, F. Paz-Chinchón, et al., Astrophys. J. Lett. 807, 21 (2015).

    Article  ADS  Google Scholar 

  30. M. C. Pinsonneault, Y. Elsworth, C. Epstein, S. Hekker, et al., Astrophys. J. 215, 19 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Savanov.

Additional information

Original Russian Text © V.B. Puzin, I.S. Savanov, E.S. Dmitrienko, 2017, published in Astronomicheskii Zhurnal, 2017, Vol. 94, No. 8, pp. 699–708.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzin, V.B., Savanov, I.S. & Dmitrienko, E.S. A search for FK Com candidates using Kepler Space Telescope observations: Analogs of HD 199178. Astron. Rep. 61, 693–701 (2017). https://doi.org/10.1134/S1063772917070071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772917070071

Navigation