Advertisement

Astronomy Reports

, Volume 61, Issue 4, pp 275–280 | Cite as

Early formation of (super)massive black holes and gravitational waves from their coalescence

Article

Abstract

Astronomical observations of last few years have presented a surprising evidence that the Universe at redshift of order 10 is densely populated by supermassive black holes (quasars), supernovae, and contains very large amount of dust. All these data are in conflict with the canonical theory of quasar and supernova formation. A model is discussed which in a simple and natural way solves all these problem. In addition it explains an existence of supermassive black holes in each large galaxy and even in small ones. An inverted picture of galaxy formation is suggested when primordial black holes serve as seeds of galaxy formation. Simultaneously the origin and properties of black hole binaries, sources of gravitational waves registered by LIGO are explained. As a by-product the model may lead to abundant cosmological antimatter even in the Galaxy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Dolgov and J. Silk, Phys. Rev. D 47, 4244 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    A. D. Dolgov, M. Kawasaki, and N. Kevlishvili, Nucl. Phys. B 807, 229 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    I. Affleck and M. Dine, Nucl. Phys. B 249, 361 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    D. J. Mortlock, S. J. Warren, B. P. Venemans, M. Patel, et al., Nature 474, 616 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    X.-B. Wu, F. Wang, X. Fan, W. Yi, et al. Nature 518, 512 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Matsuoka, M. Onoue, N. Kashikawa, K. Iwasawa, et al., Astrophys. J. 828, 26 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    F. Melia, Astron. J. 147, 120 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    W. Zheng, M. Postman, A. Zitrin, J. Moustakas, et al., Nature 489, 406 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    D. Coe, A. Zitrin, M. Carrasco, X. Shu, et al., Astrophys. J. 762, 32 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, et al., Astron. and Astrophys. 571, A16 (2014).CrossRefGoogle Scholar
  11. 11.
    C.-W. Tsai, P. R. M. Eisenhardt, J. Wu, D. Stern, et al., Astrophys. J. 805, 90 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    P. A. Oesch, G. Brammer, P. G. van Dokkum, G. D. Illingworth, et al., Astrophys. J. 819, 129 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    D. Waters, S. Wilkins, T. Di Matteo, Y. Feng, R. Croft, and D. Nagai, Monthly Not. Roy. Astron. Soc. 461, L51 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    D. L. Clements, J. Greenslade, D. A. Riechers, J. Wardlow, and I. Pérez-Fournon, in Galaxies at High Redshift and Their Evolution over Cosmic Time, IAUSymp. 319, 84 (2016).ADSGoogle Scholar
  15. 15.
    L. Mattsson, preprint arXiv:1505.04758 (2015).Google Scholar
  16. 16.
    K. K. Knudsen, D. Watson, D. Frayer, L. Christensen, et al., preprint arXiv:1603.03222 (2016).Google Scholar
  17. 17.
    V. Asboth, A. Conley, J. Sayers, M. Béthermin, et al., Monthly Not. Roy. Astron. Soc. 462, 1989 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    M. Mancini, R. Schneider, L. Graziani, R. Valiante, et al., Monthly Not. Roy. Astron. Soc. 451, L70 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    M. J. Michalowski, preprint arXiv:1512.00849 (2015).Google Scholar
  20. 20.
    R. Nakamura, M.-A. Hashimoto, S.-I. Fujimoto, N. Nishimura, and K. Sato, preprint arXiv:1007.0466 (2010).Google Scholar
  21. 21.
    S. Matsuura, S.-I. Fujimoto, S. Nishimura, M.-A. Hashimoto, and K. Sato, Phys. Rev. D 72, 123505 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    S. Matsuura, S.-I. Fujimoto, M.-A. Hashimoto, and K. Sato, Phys. Rev. D 75, 068302 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    S. Matsuura, A. D. Dolgov, S. Nagataki, and K. Sato, Progress of Theoretical Physics 112, 971 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    T. Matsumoto, D. Nakauchi, K. Ioka, and T. Nakamura, Astrophys. J. 823, 83 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, et al., Astrophys. J. 572 (2002).Google Scholar
  26. 26.
    J. J. Condon, J. Darling, Y. Y. Kovalev, and L. Petrov, Astroph. J., in press (2016).Google Scholar
  27. 27.
    A. D. Dolgov, preprint arXiv:1605.06749 (2016).Google Scholar
  28. 28.
    A. Lupi, F. Haardt, M. Dotti, D. Fiacconi, L. Mayer, and P. Madau, Monthly Not. Roy. Astron. Soc. 456, 2993 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    R. Valiante, R. Schneider, M. Volonteri, and K. Omukai, Monthly Not. Roy. Astron. Soc. 457, 3356 (2016).ADSCrossRefGoogle Scholar
  30. 30.
    J. L. Johnson and F. Haardt, Publ. Astron. Soc. Austral. 33, e007 (2016).ADSCrossRefGoogle Scholar
  31. 31.
    B. Carr, F. Kuhnel, and M. Sandstad, Phys. Rev. D 94, 083504 (2016).ADSCrossRefGoogle Scholar
  32. 32.
    J. F. Hennawi, J. X. Prochaska, S. Cantalupo, and F. Arrigoni-Battaia, Science 348, 779 (2015).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    F. Özel, D. Psaltis, R. Narayan, and J. E. McClintock, Astrophys. J. 725, 1918 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    L. Kreidberg, C. D. Bailyn, W. M. Farr, and V. Kalogera, Astrophys. J. 757, 36 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    S. I. Blinnikov, A. D. Dolgov, and K. A. Postnov, Phys. Rev. D 92, 023516 (2015).ADSCrossRefGoogle Scholar
  36. 36.
    J. Kalirai, Nature 486, 90 (2012).ADSGoogle Scholar
  37. 37.
    A. Frebe, N. Christlieb, J. E. Norris, and C. Thom, Astrophys. J. Lett. 660, L117 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    H. E. Bond, E. P. Nelan, D. A. VandenBerg, G. H. Schaefer, and D. Harmer, Astrophys. J. Lett. 765, L12 (2013).ADSCrossRefGoogle Scholar
  39. 39.
    X. Dumusque, A. S. Bonomo, R. D. Haywood, L. Malavolta, et al., Astrophys. J. 789, 154 (2014).ADSCrossRefGoogle Scholar
  40. 40.
    C. Bambi and A. D. Dolgov, Nucl. Phys. B 784, 132 (2007).ADSCrossRefGoogle Scholar
  41. 41.
    A. D. Dolgov and S. I. Biinnikov, Phys. Rev. D 89, 021301 (2014).ADSCrossRefGoogle Scholar
  42. 42.
    S. I. Blinnikov, A. D. Dolgov, and K. A. Postnov, Phys. Rev. D 92, 023516 (2015).ADSCrossRefGoogle Scholar
  43. 43.
    B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, et al., Phys. Rev. Lett. 116, 061102 (2016).ADSCrossRefGoogle Scholar
  44. 44.
    B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, et al., Phys. Rev. Lett. 116, 241103 (2016).ADSCrossRefGoogle Scholar
  45. 45.
    S. I. Blinnikov, A. D. Dolgov, N. Porayko, and K. A. Postnov, JCAP 1611 (2016) no. 11, 036.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.University of FerraraFerraraItaly
  3. 3.Institute for Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations