Advertisement

Astronomy Reports

, Volume 61, Issue 4, pp 299–306 | Cite as

VLBI of supernovae and gamma-ray bursts

Article

Abstract

Supernovae and gamma-ray bursts (GRBs) are among the brightest events in the universe. Excluding Type Ia supernovae and short GRBs, they are the result of the core collapse of a massive star with material being ejectedwith speeds of several 1000 km/s to nearly the speed of light, and with a neutron star or a black hole left over as the compact remnant of the explosion. Synchrotron radiation in the radio is generated in a shell when the ejecta interact with the surrounding medium and possibly also in the central region near the compact remnant itself. VLBI has allowed resolving some of these sources and monitoring their expansion in detail, thereby revealing characteristics of the dying star, the explosion, the expanding shock front, and the expected compact remnant. We report on updates of some of the most interesting results that have been obtained with VLBI so far. Movies of supernovae are available from our website. They show the evolution from shortly after the explosion to decades thereafter, in one case revealing an emerging compact central source, which may be associated with shock interaction near the explosion center or with the stellar corpse itself, a neutron star or a black hole.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. S. Shklovskii, Dokl. Acad. Nauk SSSR 90, 983 (1953).Google Scholar
  2. 2.
    L. M. Gindilis, in A Brief History of Radio Astronomy in the USSR, Astrophysics and Space Science Library 382, Springer, 89 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    M. F. Bietenholz, Y. Yuan, R. Yuan, A. P. Lobanov, and R. Blandford, Monthly Not. Roy. Astron. Soc. 446, 205 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    N. Bartel and M. F. Bietenholz, Astrophys. J. 682, 1065 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    M. F. Bietenholz, N. Bartel, and M. P. Rupen, Astrophys. J. 712, 1057 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    G. Zanardo, L. Staveley-Smith, C.-Y. Ng, G. M. Gaensler, T. M. Potter, R. N. Manchester, and A. K. Tzioumis, Astrophys. J. 767, 98 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    N. Bartel, M. F. Bietenholz, M. P. Rupen, A. J. Beasley, D. A. Graham, V. I. Altunin, T. Venturi, G. Umana, W. H. Cannon, and J. E. Conway, Science 287, 112 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    J. M. Marcaide, I. Martí-Vidal, A. Alberdi, M. A. Pérez-Torres, et al., Astron. Astrophys. 505, 927 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    I. Martí-Vidal, J. M. Marcaide, A. Alberdi, J. C. Guirado, M. A. Pérez-Torres, and E. Ros, Astron. Astrophys. 526, 142 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    M. F. Bietenholz, in 12th EVN Symposium and Users Meeting, Trieste SISSA, 51 (2014).Google Scholar
  11. 11.
    A. Brunthaler, I. Martí-Vidal, K. M. Menten, M. J. Reid, et al., Astron. Astrophys. 516, 27 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    A. de Witt, M. F. Bietenholz, A. Kamble, A. M. Soderberg, A. Brunthaler, B. Zauderer, N. Bartel, and M. P. Rupen, Monthly Not. Roy. Astron. Soc. 455, 511 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    N. Bartel, M. F. Bietenholz, M. P. Rupen, and V. V. Dwarkadas, Astrophys. J. 668, 924 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    R. A. Chevalier, Astrophys. J. 359, 302 (1982).ADSCrossRefGoogle Scholar
  15. 15.
    R. A. Chevalier and C. Fransson, Astrophys. J. 420, 368 (1996).Google Scholar
  16. 16.
    M. F. Bietenholz, N. Bartel, and M. P. Rupen, Astrophys. J. 592, 374 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    M. J. Mioduszewski, V. V. Dwarkadas, and L. Ball, Astrophys. J. 562, 869 (2001).ADSCrossRefGoogle Scholar
  18. 18.
    N. Bartel, M. F. Bietenholz, M. P. Rupen, A. J. Beasley, D. A. Graham, V. I. Altunin, T. Venturi, G. Umana, W. H. Cannon, and J. E. Conway, Astrophys. J. 581, 404 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    N. Langer, Ann. Rev. Astron. Astrophys. 50, 107 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    R. A. Chevalier, Astrophys. J. Lett. 752, L2 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    S. D. Ryder, R. Kotak, I. A. Smith, S. J. Tingay, E. C. Kool, and J. Polshaw, Astron. Astrophys. in press, arXiv:1610.03149v2 (2016).Google Scholar
  22. 22.
    F. E. Bauer, V. V. Dwarkadas, W. N. Brandt, S. Immler, S. Smartt, N. Bartel, and M. F. Bietenholz, Astrophys. J. 688, 1210 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    G. B. Taylor, D. A. Frail, E. Berger, and S. R. Kulkarni, Astrophys._J. Lett. 609, L1 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    Y. M. Pihlström, G. B. Taylor, J. Granot, and S. Doeleman, Astrophys. J. 664, 411 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    M. F. Bietenholz, F. DeColle, J. Granot, N. Bartel, and A. M. Soderberg, Monthly Not. Roy. Astron. Soc. 440, 821 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    A. Corsi, A. Gal-Yam, S. R. Kulkarni, D. A. Frail, et al., Astrophys. J. 830, 42 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    A. M. Soderberg, S. Chakraborti, G. Pignata, R. A. Chevalier, et al., Nature 463, 513 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    M. F. Bietenholz, A. M. Soderberg, N. Bartel, S. P. Ellingsen, S. Horiuchi, C. J. Phillips, A. K. Tzioumis, M. H. Wieringa, and N. N. Chugai, Astrophys. J. 725, 4 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.York UniversityTorontoCanada
  2. 2.Hartebeesthoek Radio ObservatoryKrugersdropSouth Africa

Personalised recommendations