Skip to main content
Log in

Dust in galaxy clusters

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The conditions for the destruction of dust in hot gas in galaxy clusters are investigated. It is argued that extinction measurements can be subject to selection effects, hindering their use in obtaining trustworthy estimates of dust masses in clusters. It is shown, in particular, that the ratio of the dust mass to the extinction M d /S d increases as dust grains are disrupted, due to the rapid destruction of small grains. Over long times, this ratio can asymptotically reach values a factor of three higher than the mean value in the interstellar medium in the Galaxy. This lowers dust-mass estimates based on measurements of extinction in galaxy clusters. The characteristic lifetime of dust in hot cluster gas is determined by its possible thermal isolation by the denser medium of gas fragments within which the dust is ejected from galaxies, and can reach 100–300 million years, depending on the kinematics and morphology of the fragments. As a result, the mass fraction of dust in hot cluster gas can reach 1–3% of the Galactic value. Over its lifetime, dust can also be manifest through its far-infrared emission. The emission characteristics of the dust change as it is disrupted, and the ratio of the fluxes at 350 and 850 μm can increase appreciably. This can potentially serve as an indicator of the state of the dust and ambient gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Zwicky, Publ. Astron. Soc. Pacif. 63, 61 (1951).

    Article  ADS  Google Scholar 

  2. F. Zwicky, in Problems in Extragalactic Research, Ed. by G. C. McVittie (Macmillan, New York, 1962), p.149.

  3. I. D. Karachentsev and V. A. Lipovetskii, Sov. Astron. 12, 909 (1968).

    ADS  Google Scholar 

  4. A. Renzini, Astrophys. J. 488, 35 (1997).

    Article  ADS  Google Scholar 

  5. S. Perlmutter, S. Gabi, G. Goldhaber, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, R. Pain, C. R. Pennypacker, I. A. Small, R. S. Ellis, R. G. McMahon, B. J. Boyle, et al., Astrophys. J. 483, 565 (1997).

    Article  ADS  Google Scholar 

  6. D. Chelouche, B. P. Koster, and D. V. Bowen, Astrophys. J. 671, L97 (2007).

    Article  ADS  Google Scholar 

  7. S. Muller, S.-Y. Wu, B. C. Hsieh, R. A. Gonzalez, L. Loinard, H. K. C. Yee, and M. D. Gladders, Astrophys. J. 680, 975 (2008).

    Article  ADS  Google Scholar 

  8. S. L. McGee and M. L. Balough, Mon. Not. R. Astron. Soc. 405, 2069 (2010).

    ADS  Google Scholar 

  9. T. Kitayama, Y. Ito, Y. Okada, H. Kaneda, H. Takahashi, N. Ota, T. Onaka, Y. Y. Tajiri, H. Nagata, and K. Yamada, Astrophys. J. 695, 1191 (2009).

    Article  ADS  Google Scholar 

  10. M. Fukugita, arXiv:1103.4191v1 [astro-ph.CO] (2011).

  11. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 462, 563 (1996).

    Article  ADS  Google Scholar 

  12. S. A. Pustil’nik, Sov. Astron. Lett. 1, 49 (1975).

    ADS  Google Scholar 

  13. N. V. Voshchinnikov and V. K. Khersonskij, Astrophys. Space Sci. 103, 301 (1984).

    Article  ADS  Google Scholar 

  14. E. Dwek, Y. Rephaeli, and J. C. Mather, Astrophys. J. 350, 104 (1990).

    Article  ADS  Google Scholar 

  15. A. C. Edge, J. B. R. Oonk, R. Mittal, S. W. Allen, S. A. Baum, H. Bohringer, J. N. Bregman, M. N. Bremer, F. Combes, C. S. Crawford, M. Donahue, E. Egami, A. C. Fabian, G. J. Ferland, S. L. Hamer, et al., Astron. Astrophys. 518, L47 (2010).

    Article  ADS  Google Scholar 

  16. A. Ferrara, F. Ferrini, J. Franco, and B. Barsella, Astrophys. J. 381, 137 (1991).

    Article  ADS  Google Scholar 

  17. B. M. Shustov and D. Z. Wiebe, Astron. Rep. 39, 578 (1995).

    ADS  Google Scholar 

  18. M. N. Al Najm, O. L. Polikarpova, and Yu. A. Shchekinov, Astron. Rep. 60, 389 (2016).

    Article  ADS  Google Scholar 

  19. T. M. Heckman, L. Armus, and G. K. Miley, Astrophys. J. Suppl. 74, 833 (1990).

    Article  ADS  Google Scholar 

  20. A. A. Suchkov, D. S. Balsara, T. M. Heckman, and C. Leitherer, Astrophys. J. 430, 511 (1994).

    Article  ADS  Google Scholar 

  21. A. A. Suchkov, V. G. Berman, T. M. Heckman, and D. S. Balsara, Astrophys. J. 463, 528 (1996).

    Article  ADS  Google Scholar 

  22. J. L. Cooper, G. V. Bicknell, R. S. Sutherland, and J. Bland-Hawthorn, Astrophys. J. 703, 330 (2009).

    Article  ADS  Google Scholar 

  23. G. M. Voit and M. Donahue, Astrophys. J. 452, 164 (1995).

    Article  ADS  Google Scholar 

  24. F. Walter, A. Weiss, and N. Scoville, Astrophys. J. 580, L21 (2002).

    Article  ADS  Google Scholar 

  25. D. Salak, N. Nakai, Y. Miyamoto, A. Yamauchi, and T. G. Tsuru, Publ. Astron. Soc. Jpn. 65, 66 (2013).

    Article  ADS  Google Scholar 

  26. P. Salas, G. Galaz, D. Salter, R. Herrera-Camus, A. D. Bolatto, and A. Kepley, Astrophys. J. 797, 134 (2014).

    Article  ADS  Google Scholar 

  27. A. Roy, B. B. Nath, P. Sharma, and Yu. Shchekinov, Mon. Not. R. Astron. Soc., Adv. Access, tmp.1241R (2016).

    Google Scholar 

  28. A. Schröer and Yu. A. Shchekinov, Phys. Plasmas 7, 4851 (2000).

    Article  ADS  Google Scholar 

  29. S. Bianchi and A. Ferrara, Mon. Not. R. Asron. Soc. 358, 378 (2005).

    ADS  Google Scholar 

  30. J. I. Davies, P. Alton, S. Bianchi, and M. Trewhella, Mon. Not._R. Asron. Soc. 300, 1006 (1998).

    Article  ADS  Google Scholar 

  31. R. I. Klein, C. F. McKee, and P. Colella, Astrophys. J. 420, 213 (1996).

    Article  ADS  Google Scholar 

  32. E. E. Matvienko and Yu. A. Shchekinov, Astron. Rep. 51, 109 (2007).

    Article  ADS  Google Scholar 

  33. S. Yu. Dedikov and Yu. A. Shchekinov, Astron. Rep. 48, 9 (2004).

    Article  ADS  Google Scholar 

  34. E. O. Vasiliev, S. Yu. Dedikov, and Yu. A. Shchekinov, Astrophys. Bull. 64, 317 (2009).

    Article  ADS  Google Scholar 

  35. R. A. Simcoe, W. L. W. Sargent, M. Rauch, and G. Becker, Astrophys. J. 637, 648 (2006).

    Article  ADS  Google Scholar 

  36. J. Schaye, R. F. Carswell, and T.-S. Kim, Mon. Not. R. Astron. Soc. 379, 1169 (2007).

    Article  ADS  Google Scholar 

  37. B. T. Draine and B. Sutin, Astrophys. J. 320, 803 (1987).

    Article  ADS  Google Scholar 

  38. H. Yan, A. Lazarian, and B. T. Draine, Astrophys. J. 616, 895 (2004).

    Article  ADS  Google Scholar 

  39. A. Kopp and Yu. Shchekinov, Phys. Plasmas 21, id.023702 (2014).

  40. B. T. Draine and E. E. Salpeter, Astrophys. J. 231, 77 (1979).

    Article  ADS  Google Scholar 

  41. C. F. McKee, in Interstellar Dust, Ed. by L. J. Allamandola and A. G. G. M. Tielens (Kluwer Academic, Dordrecht, 1989), p.431.

  42. A. Ferrara and Yu. A. Shchekinov, Astrophys. J. 417, 595 (1993).

    Article  ADS  Google Scholar 

  43. L. Cowie, C. F. McKee, and J. Ostriker, Astrophys. J. 247, 908 (1981).

    Article  ADS  Google Scholar 

  44. G. M. Voit, Astrophys. J. 740, 28 (2011).

    Article  ADS  Google Scholar 

  45. M. Arnaud, E. Pointecouteau, and G. W. Pratt, Astron. Astrophys. 441, 893 (2005).

    Article  ADS  Google Scholar 

  46. N. Ota, Res. Astron. Astrophys. 12, 973 (2012).

    Article  ADS  Google Scholar 

  47. T. H. Reiprich, K. Basu, S. Ettori, H. Israel, L. Lovisari, S. Molendi, E. Pointecouteau, and M. Roncarelli, Space Sci. Rev. 177, 195 (2013).

    Article  ADS  Google Scholar 

  48. J. C. Lee, R. C. Kennicutt, J. G. Funes, S. J. Shoko Sakai, and S. Akiyama, Astrophys. J. 671, L113 (2007).

    Article  ADS  Google Scholar 

  49. A. Renzini, in Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution, Carnegie Observ. Astrophys. Ser., Ed. by J. S. Mulchaey, A. Dressler, and A. Oemler (Cambridge Univ. Press, Cambridge, 2004), p.260.

  50. S. L. Grishik, Plasma Sources Sci. Technol. 3, 388 (1994).

    Article  ADS  Google Scholar 

  51. A. Laor and B. T. Draine, Astrophys. J. 402, 441 (1993).

    Article  ADS  Google Scholar 

  52. A. G. G. M. Tielens, C. F. McKee, C. G. Seab, and D. J. Hollenbach, Astrophys. J. 431, 321 (1994).

    Article  ADS  Google Scholar 

  53. A. P. Jones, A. G. G. M. Tielens, D. J. Hollenbach, and C. F. McKee, Astrophys. J. 433, 797 (1994).

    Article  ADS  Google Scholar 

  54. M. D. Gray and M. G. Edmunds, Mon. Not. R. Astron. Soc. 349, 491 (2004).

    Article  ADS  Google Scholar 

  55. K. Yamada and T. Kitayama, Publ. Astron. Soc. Jpn. 57, 611 (2005).

    Article  ADS  Google Scholar 

  56. T. Nozawa, T. Kozasa, A. Habe, E. Dwek, H. Umeda, N. Tominaga, K. Maeda, and K. Nomoto, Astrophys. J. 666, 955 (2007).

    Article  ADS  Google Scholar 

  57. B. T. Draine and H. M. Lee, Astrophys. J. 258, 89 (1984).

    Article  ADS  Google Scholar 

  58. E. Dwek and R. G. Arendt, Ann. Rev. Astron. Astrophys. 30, 11 (1992).

    Article  ADS  Google Scholar 

  59. R. H. Hildebrand, Quart. J. Roy. Astron. Soc. 24, 267 (1983).

    ADS  Google Scholar 

  60. L. Cortese, L. Ciesla, A. Boselli, S. Bianchi, H. Gomez, M. W. L. Smith, G. J. Bendo, S. Eales, M. Pohlen, M. Baes, E. Corbelli, J. I. Davies, T. M. Hughes, L. K. Hunt, S. C. Madden, et al., Astron. Astrophys. 540, id. A52 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Shchekinov.

Additional information

Original Russian Text © O.L. Polikarpova, Yu.A. Shchekinov, 2017, published in Astronomicheskii Zhurnal, 2017, Vol. 94, No. 2, pp. 99–113.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polikarpova, O.L., Shchekinov, Y.A. Dust in galaxy clusters. Astron. Rep. 61, 89–102 (2017). https://doi.org/10.1134/S1063772917020044

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772917020044

Navigation