Skip to main content
Log in

Diagnostics for the elemental composition of protostellar objects

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The sensitivity of a number of aspects of the chemical evolution of a molecular cloud to its elemental composition is investigated. Four models are considered: one with high metallicity, for which the evolution proceeds exclusively in the gas phase, two with low metallicity, for which processes proceed both in the gas phase and on grain surfaces, and a model with low metallicity and an artificially reduced oxygen content. One of the low-metallicity models initially contains only neutral components, while some initial ionization of atoms of heavy elements is included in the other models. A network of chemical reactions, including a detailed description of the chemistry of deuterium compounds, is used to analyze this sensitivity. It is shown that the initial composition affects the chemical evolution of most components in some way, but this influence is sometimes negligible. The inclusion of certain chemical factors can be important, such as surface reactions and the loss of a substantial fraction of atoms of heavy elements that are in grains. However, some components are influenced by even small variations in the initial and elemental compositions. One such component is the DCO+ ion, whose evolution is sensitive to the initial degree of ionization of atoms of heavy elements, even if the set of reactions included and the elemental composition are the same in different cases. The possible use of HD and HF as indicators of the presence of molecular hydrogen is also considered. HF reliably traces H2 at times exceeding 105 years under the physical conditions considered. However,HD is not a reliable indicator of H2 at the densities characteristic for protostellar clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Kochina, D. S. Wiebe, S. V. Kalenskii, and A. I. Vasyunin, Astron. Rep. 57, 818 (2013).

    Article  ADS  Google Scholar 

  2. O. V. Kochina and D. S. Wiebe, Astron. Rep. 58, 228 (2014).

    Article  ADS  Google Scholar 

  3. J. Le Bourlot, G. Pineau de Forêts, E. Roueff, and P. Schilke, Astrophys. J. 416, L87 (1993).

    Article  ADS  Google Scholar 

  4. J. Le Bourlot, G. Pineau de Forêts, and E. Roueff, Astron. Astrophys. 297, 251 (1995).

    ADS  Google Scholar 

  5. S. Viti, E. Roueff, T. W. Hartquist, G. Pineau des Forêts, and D. A. Williams, Astron. Astrophys. 370, 557 (2001).

    Article  ADS  Google Scholar 

  6. H.-H. Lee, E. Roueff, G. Pineau des Forêts, O. M. Shalabiea, R. Terzieva, and E. Herbst, Astron. Astrophys. 334, 1047 (1998).

    ADS  Google Scholar 

  7. O. Shalabiea and J. M. Greenberg, Astron. Astrophys. 296, 779 (1995).

    ADS  Google Scholar 

  8. J. Le Bourlot, G. Pineau de Forêts, E. Roueff, and D. R. Flower, Astron. Astrophys. 302, 870 (1995).

    ADS  Google Scholar 

  9. G. I. Boger and A. Sternberg, Astrophys. J. 645, 314 (2006).

    Article  ADS  Google Scholar 

  10. E. M. Penteado, H. M. Cuppen, and H. J. Rocha-Pinto, Mon. Not. R. Astron. Soc. 439, 3616 (2014).

    Article  ADS  Google Scholar 

  11. S. Bialy and A. Sternberg, Mon. Not. R. Astron. Soc. 450, 4424 (2015).

    Article  ADS  Google Scholar 

  12. V. Wakelam, E. Herbst, J. Le Bourlot, F. Hersant, F. Selsis, and S. Guilloteau, Astron. Astrophys. 517, A21 (2010).

    Article  ADS  Google Scholar 

  13. T. Albertsson, D. Semenov, and Th. Henning, Astrophys. J. 784, 39 2014.

    Article  ADS  Google Scholar 

  14. O. V. Kochina and D. S. Wiebe, Astron. Rep. 59, 762 (2015).

    Article  ADS  Google Scholar 

  15. Y. Aikawa, S. M. Miyama, T. Nakano, and T. Umebayashi, Astrophys. J. 467, 684 (1996).

    Article  ADS  Google Scholar 

  16. D. S. Wiebe, V. I. Shematovich, and B. M. Shustov, Astron. Rep. 40, 639 (1996).

    ADS  Google Scholar 

  17. V. I. Shematovich, B. M. Shustov, and D. S. Wiebe, Mon. Not. R. Astron. Soc. 292, 601 (1997).

    Article  ADS  Google Scholar 

  18. V. I. Shematovich, D. S. Wiebe, and B. M. Shustov, Astron. Rep. 43, 645 (1999).

    ADS  Google Scholar 

  19. Ya. Pavlyuchenkov, D. Wiebe, R. Launhardt, and Th. Henning, Astrophys. J. 645, 1212 (2006).

    Article  ADS  Google Scholar 

  20. Ya. N. Pavlyuchenkov, D. Z. Wiebe, A. M. Fateeva, and T. S. Vasyunina, Astron. Rep. 55, 1 (2011).

    Article  ADS  Google Scholar 

  21. E. Anders and N. Grevesse, Geochim. Cosmochim. Acta 53, 197 (1989).

    Article  ADS  Google Scholar 

  22. M. Asplund, N. Grevesse, J. A. Sauval, and P. Scott, Ann. Rev. Astron. Astrophys. 47, 481 (2009).

    Article  ADS  Google Scholar 

  23. P. Sonnentrucker, D. A. Neufeld, T. G. Phillips, M. Gerin, D. C. Lis, M. de Luca, J. R. Goicoechea, J. H. Black, T. A. Bell, F. Boulanger, J. Cernicharo, A. Coutens, E. Dartois, M. Kaźmierczak, P. Encrenaz, et al., Astron. Astrophys. 521, L12 (2010).

    Article  ADS  Google Scholar 

  24. E. A. Bergin, L. I. Cleeves, U. Gorti, K. Zhang, G. A. Blake, J. D. Green, S. M. Andrews, N. J. Evans II, Th. Henning, K. Oberg, K. Pontoppidan, Ch. Qi, C. Salyk, and E. F. van Dishoeck, Nature 493, 644 (2011).

    Article  ADS  Google Scholar 

  25. F. F. S. van der Tak, J. H. Black, F. L. Schoier, D. J. Jansen, and E. F. van Dishoeck, Astron. Astrophys. 468, 627 (2007).

    Article  ADS  Google Scholar 

  26. F. F. S. van der Tak, V. Ossenkopf, Z. Nagy, A. Faure, M. Röllig, and E. A. Bergin, Astron. Astrophys. 537, L10 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kochina.

Additional information

Original Russian Text © O.V. Kochina, D.S. Wiebe, 2017, published in Astronomicheskii Zhurnal, 2017, Vol. 94, No. 2, pp. 114–126.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochina, O.V., Wiebe, D.S. Diagnostics for the elemental composition of protostellar objects. Astron. Rep. 61, 103–114 (2017). https://doi.org/10.1134/S1063772917020019

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772917020019

Navigation