Skip to main content

Analytical methods for measuring the parameters of interstellar gas using methanol observations


The excitation of methanol in the absence of external radiation is analyzed, and LTE methods for probing interstellar gas considered. It is shown that rotation diagrams correctly estimate the gas kinetic temperature only if they are constructed using lines whose upper levels are located in the same K-ladders, such as the J 0J −1 E lines at 157 GHz, the J 1J 0 E lines at 165 GHz, and the J 2J 1 E lines at 25 GHz. The gas density must be no less than 107 cm−3. Rotation diagrams constructed from lines with different K values for their upper levels (e.g., 2 K −1 K at 96 GHz, 3 K −2 K at 145 GHz, 5 K −4 K at 241 GHz) significantly underestimate the temperature, but enable estimation of the density. In addition, diagrams based on the 2 K −1 K lines can be used to estimate the methanol column density within a factor of about two to five. It is suggested that rotation diagrams should be used in the following manner. First, two rotation diagrams should be constructed, one from the lines at 96, 145, or 241 GHz, and another from the lines at 157, 165, or 25 GHz. The former diagram is used to estimate the gas density. If the density is about 107 cm−3 or higher, the latter diagram reproduces the temperature fairly well. If the density is around 106 cm−3, the temperature obtained from the latter diagram should be multiplied by a factor of 1.5–2. If the density is about 105 cm−3 or lower, then the latter diagram yields a temperature that is lower than the kinetic temperature by a factor of three or more, and should be used only as a lower limit for the kinetic temperature. The errors in the methanol column density determined from the integrated intensity of a single line can be more than an order of magnitude, even when the gas temperature is well known. However, if the J 0−(J − 1)0 E lines, as well as the J 1−(J − 1)1 A + or A lines are used, the relative error in the column density is no more than a factor of a few.

This is a preview of subscription content, access via your institution.


  1. 1.

    B. E. Turner, Astrophys. J. 501, 731 (1998).

    ADS  Article  Google Scholar 

  2. 2.

    F. F. S. van der Tak, E. F. van Dishoeck, and P. Caselli, Astron. Astrophys. 361, 327 (2000).

    ADS  Google Scholar 

  3. 3.

    J. T. Pottage, D. R. Flower, and S. L. Davis, J. Phys. B 35, 2541 (2002).

    ADS  Article  Google Scholar 

  4. 4.

    J. T. Pottage, D. R. Flower, and S. L. Davis, Mon. Not. R. Astron. Soc. 352, 39 (2004).

    ADS  Article  Google Scholar 

  5. 5.

    S. V. Kalenskii, A. V. Alakoz, and V. G. Promyslov, in Chemistry as a Diagnostic of Star Formation, Ed. by C. L. Curry and M. Fish (NRCPress,Ottawa, Canada, 2003), Vol. 53, p. 321.

    ADS  Google Scholar 

  6. 6.

    S. Leurini, P. Schilke, K. M. Menten, D. R. Flower, J. T. Pottage, and L.-H. Xu, Astron. Astrophys. 422, 573 (2004).

    ADS  Article  Google Scholar 

  7. 7.

    S. V. Salii, PhD Thesis (Ural State University, Yekaterinburg, 2009).

    Google Scholar 

  8. 8.

    R. Bachiller, S. Liechti, C. M. Walmsley, and F. S. Colomer, Astron. Astrophys. 295, 51 (1995).

    ADS  Google Scholar 

  9. 9.

    M. Benedettini, S. Viti, C. Codella, M. Benedettini, S. Viti, C. Codella, F. Gueth, A. I. Gómez-Ruiz, R. Bachiller, M. T. Beltrán, G. Busquet, C. Ceccarelli, and B. Lefloch, Mon. Not. R. Astron. Soc. 436, 179 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975).

    Google Scholar 

  11. 11.

    R. M. Lees and J. G. Baker, J. Chem. Phys. 48, 5299 (1968).

    ADS  Article  Google Scholar 

  12. 12.

    R. M. Lees, Astrophys. J. 184, 763 (1973).

    ADS  Article  Google Scholar 

  13. 13.

    S. Leurini, P. Schilke, F. Wyrowski, and K. M. Menten, Astron. Astrophys. 466, 215 (2007).

    ADS  Article  Google Scholar 

  14. 14.

    M. Elitzur, Rev. Mod. Phys. 54, 1225 (1982).

    ADS  Article  Google Scholar 

  15. 15.

    F. F. S. van der Tak, J. H. Black, F. L. Schöier, D. J. Jansen, and E. F. van Dishoeck, Astron. Astrophys. 468, 627 (2007).

    ADS  Article  Google Scholar 

  16. 16.

    G. A. Blake, E. C. Sutton, C. R. Masson, and T. G. Phillips, Astrophys. J. 315, 621 (1987).

    ADS  Article  Google Scholar 

  17. 17.

    A. Remijan, E. C. Sutton, L. E. Snyder, D. N. Friedel, S.-Y. Liu, and C.-C. Pei, Astrophys. J. 606, 917 (2004).

    ADS  Article  Google Scholar 

  18. 18.

    P. F. Goldsmith and W. D. Langer, Astrophys. J. 517, 209 (1999).

    ADS  Article  Google Scholar 

  19. 19.

    E. Gibb, A. Nummelin, W. M. Irvine, D. C. Whittet, and P. Bergman, Astrophys. J. 545, 309 (2000).

    ADS  Article  Google Scholar 

  20. 20.

    S. V. Kalenskii, A. M. Dzura, R. S. Booth, A. Winnberg, and A. V. Alakoz, Astron. Astrophys. 321, 311 (1997).

    ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. V. Kalenskii.

Additional information

Original Russian Text © S.V. Kalenskii, S. Kurtz, 2016, published in Astronomicheskii Zhurnal, 2016, Vol. 93, No. 8, pp. 692–709.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalenskii, S.V., Kurtz, S. Analytical methods for measuring the parameters of interstellar gas using methanol observations. Astron. Rep. 60, 702–717 (2016).

Download citation