Skip to main content
Log in

Estimation of the radius of a star based on its effective temperature and surface gravity

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Amethod for determining the radius of a star using its effective temperature and surface gravity is proposed. The method assumes that the relationship between the radius, effective temperature, and surface gravity can be approximated using models for the internal structure and evolution of the star. The method is illustrated using the Geneva–Toulouse evolutionary computations for two metal abundances—solar and one-tenth of solar. Analysis of the systematic errors shows that the accuracy of the method is better than 10% over most part of the Hertzsprung–Russell diagram, and is about 5% for main-sequence stars. The maximum relative systematic error due to the simplifications underlying the method is about 15%. A test using eclipsing binaries confirms the viability of the proposed method for estimating stellar radii. In the region of the main sequence, systematic deviations do not exceed 2%, and the relative standard deviation is ≤4.7%. It is expected that th maximum relative error over the rest of the Hertzsprung–Russell diagram will likewise be close to the systematic error, about 15–20%. The method is applied to estimate the radii of model stellar atmospheres. Such estimates can be used to synthesize the color index and luminosity of a star. The method can be used whenever accuracies of about 10% in the estimated stellar radius and luminosity are acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Blackwell, A. D. Petford, and M. J. Shallis, Astron. Astrophys. 82, 249 (1980).

    ADS  Google Scholar 

  2. D. E. Blackwell, A. D. Petford, S. Arribas, D. J. Haddock, and M. J. Selby, Astron. Astrophys. 232, 396 (1990).

    ADS  Google Scholar 

  3. I. Ramírez and J. Melendez, Astrophys. J. 626, 446 (2005).

    Article  ADS  Google Scholar 

  4. S. Sichevskij, Astron. Rep. 56, 710 (2012). doi 10.1134/S1063772912090089

    Article  ADS  Google Scholar 

  5. S. G. Sichevskiy, A. V. Mironov, and O. Y. Malkov, Astron. Nachr. 334, 832 (2013).

    Article  ADS  Google Scholar 

  6. S. G. Sichevskij, A. V. Mironov, and O. Y. Malkov, Astrophys. Bull. 69, 160 (2014).

    Article  ADS  Google Scholar 

  7. S. V. Karpov, O. Y. Malkov, and A. V. Mironov, Astrophys. Bull. 67, 82 (2012).

    Article  ADS  Google Scholar 

  8. A. Alonso, S. Arribas, and C. Martinez-Roger, Astron. Astrophys. 313, 873 (1996).

    ADS  Google Scholar 

  9. T. Kinman and F. Castelli, Astron. Astrophys. 391, 1039 (2002).

    Article  ADS  Google Scholar 

  10. I. Ramírez and J. Melendez, Astrophys. J. 626, 465 (2005), astro-ph/0503110.

    Article  ADS  Google Scholar 

  11. J. I. González Hernández and P. Bonifacio, Astron. Astrophys. 497, 497 (2009); arXiv:0901.3034.

    Article  ADS  Google Scholar 

  12. S. Ekström, C. Georgy, P. Eggenberger, G. Meynet, N. Mowlavi, A. Wyttenbach, A. Granada, T. Decressin, R. Hirschi, U. Frischknecht, et al., Astron. Astrophys. 537, A146 (2012); arXiv:1110.5049.

    Article  ADS  Google Scholar 

  13. F. Castelli and R. L. Kurucz, in Modelling of Stellar Atmospheres, Ed. by N. Piskunov, W.W. Weiss, and D. F. Gray (Astronomical Society of the Pacific, 2003), p. A20.

  14. A. Richichi and I. Percheron, Astron. Astrophys. 386, 492 (2002).

    Article  ADS  Google Scholar 

  15. G. Torres, J. Andersen, and A. Giménez, Astron. Astrophys. Rev. 18, 67 (2010); arXiv:0908.2624.

    Article  ADS  Google Scholar 

  16. V.V. Muzylev, Nauch. Inform.Astron. Sov.ANSSSR 41, 94 (1978) [in Russian].

    ADS  Google Scholar 

  17. O. Y. Malkov, S. G. Sichevskij, and D. A. Kovaleva, Mon. Not. R. Astron. Soc. 401, 695 (2010).

    Article  ADS  Google Scholar 

  18. C. Georgy, S. Ekstrom, P. Eggenberger, G. Meynet, L. Haemmerlé, A. Maeder, A. Granada, J. H. Groh, R. Hirschi, N. Mowlavi, et al., Astron. Astrophys. 558, A103 (2013); arXiv:1308.2914.

    Article  ADS  Google Scholar 

  19. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Ann. Rev. Astron. Astrophys. 47, 481 (2009), 0909.0948.

    Article  ADS  Google Scholar 

  20. O. Y. Malkov, Mon. Not. R. Astron. Soc. 382, 1073 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Sichevskij.

Additional information

Original Russian Text © S.G. Sichevskij, 2016, published in Astronomicheskii Zhurnal, 2016, Vol. 93, No. 6, pp. 581–594.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sichevskij, S.G. Estimation of the radius of a star based on its effective temperature and surface gravity. Astron. Rep. 60, 598–610 (2016). https://doi.org/10.1134/S1063772916040119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772916040119

Navigation