Skip to main content
Log in

Figures of equilibrium inside a gravitating ring and the limiting oblateness of elliptical galaxies

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A new class of figures of equilibrium for a rotating gravitating fluid located inside a gravitating ring or torus is studied. These figures form a family of sequences of generalized oblate spheroids, in which there is for any value of the tidal parameter α in the interval 0 ≤ \(0 \leqslant \frac{\alpha }{{\pi G\rho }} \leqslant 0.1867\) ≤ 0.1867 a sequence of spheroids with oblatenesses emin (α) ≤ ee max (α). A series of classicalMaclaurin spheroids from a sphere to a flat disk is obtained for α = 0. At intermediate values 0 < αα max, there are two limiting non-rotating spheroids in each sequence. When α = α max, the sequence degenerates into a single non-rotating spheroid with e cr ≈ 0.9600, corresponding to the maximum oblateness of E7 elliptical galaxies. The second part of the paper considers the influence of rings of dark matter on the dynamics of elliptical galaxies. It is proposed that the equilibrium of an oblate isolated non-rotating galaxy is unstable, and it cannot be supported purely by anisotropy of the stellar velocity dispersion. A ring of dark matter can stabilize a weakly rotating galaxy, supplementing standard dynamical models for such stellar systems. In order for a galaxy to acquire appreciable oblateness, the mass of the ring must be an order of magnitude higher than the mass of the galaxy itself, consistent with the ratios of the masses of dark and baryonic matter in the Universe. The influence of massive external rings could shed light on the existence of galaxies with the critical oblateness E7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. R. Gott, Astrophys. J. 201, 296 (1975).

    Article  ADS  Google Scholar 

  2. C. P. Wilson, Astron. J. 80, 175 (1975).

    Article  ADS  Google Scholar 

  3. R. B. Larson, Mon. Not. R. Astron. Soc. 173, 671 (1975).

    Article  ADS  Google Scholar 

  4. F. Bertola and M. Capassioli, Astrophys. J. 200, 439 (1975).

    Article  ADS  Google Scholar 

  5. G. Illingwort, Astrophys. J. 218, L43 (1977).

    Article  ADS  Google Scholar 

  6. J. J. Binney, Mon. Not. R. Astron. Soc. 183, 501 (1978).

    Article  ADS  Google Scholar 

  7. B. P. Kondratyev, Sov. Astron. Lett. 7, 45 (1981).

    ADS  Google Scholar 

  8. B. P. Kondratyev and L. M. Ozernoi, Sov. Astron. Lett. 5, 37 (1979).

    ADS  Google Scholar 

  9. B. P. Kondratyev, Sov. Astron. 27, 497 (1983).

    ADS  Google Scholar 

  10. R. Caimmi, Serb. Astron. J. 179, 31 (2009).

    Article  ADS  Google Scholar 

  11. J. L. Tonry, Astrophys. J. 266, 58 (1983).

    Article  ADS  Google Scholar 

  12. A. Toomre, Astrophys. J. 139, 1217 (1984).

    Article  ADS  Google Scholar 

  13. V. L. Polyachenko and I. G. Shukhman, Sov. Astron. Lett. 3, 134 (1977).

    ADS  Google Scholar 

  14. V. L. Polyachenko and I. G. Shukhman, Sov. Astron. 23, 407 (1979).

    ADS  Google Scholar 

  15. V. A. Antonov, Sov. Astron. 17, 428 (1973).

    ADS  Google Scholar 

  16. V. L. Polyachenko and A. M. Fridman, Physics of Gravitating Systems. I. Equilibrium and Stability (Nauka, Moscow, 1976; Springer, New York, 1984).

    MATH  Google Scholar 

  17. M. J. Duncan and J. G. Wheeler, Astrophys. J. 237, L27 (1980).

    Article  ADS  Google Scholar 

  18. R. L. Davies, G. Efstathiou, S. M. Fall, G. Illingworth, and P. L. Schechter, Astrophys. J. 266, 41 (1983).

    Article  ADS  Google Scholar 

  19. Y. Sofie, Y. Tutui, and M. Honma, Astrophys. J. 523, 136 (1999).

    Article  ADS  Google Scholar 

  20. R. E. White and R. A. Chevalier, Astrophys. J. 275, 69 (1983).

    Article  ADS  Google Scholar 

  21. G. A. Mamon and E. L. Lokas, Mon. Not. R. Astron. Soc. 362, 95 (2005).

    Article  ADS  Google Scholar 

  22. A. Dekel, F. Stoer, G. A. Mamon, T. J. Cox, G. S. Novak, and J. R. Primack, Nature 437, 707 (2005).

    Article  ADS  Google Scholar 

  23. P. Das, O. Gerhard, E. Churazov, and I. Zhyravleva, Mon. Not. R. Astron. Soc. 409, 1362 (2010).

    Article  ADS  Google Scholar 

  24. B. P. Kondratyev and N.G. Trubitsyna, Astrofizika 53, 217 (2010).

    Google Scholar 

  25. S. Chandrasekhar, Ellipsoidal Figures of Equilibrium (Dover, New York, 1987).

    MATH  Google Scholar 

  26. M. F. Subbotin, A Course of Celestial Mechanics (GITTL, Moscow, Leningrad, 1949), Vol. 3 [in Russian].

  27. B. P. Kondratyev, Dynamics of Ellipsoidal Gravitating Figures (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  28. B. P. Kondratyev, Sov. Astron. 26, 279 (1982).

    ADS  Google Scholar 

  29. B. P. Kondratyev, Potential Theory and Figures of Equilibrium (RKhD, Moscow, Izhevsk, 2003) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Kondratyev.

Additional information

Original Russian Text © B.P. Kondratyev, N.G. Trubitsyna, E.N. Kireeva, 2016, published in Astronomicheskii Zhurnal, 2016, Vol. 93, No. 5, pp. 504–511.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyev, B.P., Trubitsyna, N.G. & Kireeva, E.N. Figures of equilibrium inside a gravitating ring and the limiting oblateness of elliptical galaxies. Astron. Rep. 60, 526–533 (2016). https://doi.org/10.1134/S1063772916040077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772916040077

Keywords

Navigation