Skip to main content

Wind accretion: Theory and observations

Abstract

A review of wind accretion in high-mass X-ray binaries is presented. We focus on different regimes of quasi-spherical accretion onto the neutron star (NS): the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. These two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg s-1. In the subsonic case, which sets in at lower luminosities, a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto NS is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh–Taylor instability. In turn, two regimes of subsonic accretion are possible, depending on plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity with Compton cooling to the lowluminosity (Lx ≲ 3 × 1035 erg s-1) with radiative cooling can be responsible for the onset of the off states repeatedly observed in several low-luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2, and 4U 1907+09. The triggering of the transitionmay be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (~1038-1040 erg) observed in supergiant fast X-ray transients (SFXT) can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass of the shell.

This is a preview of subscription content, access via your institution.

References

  1. R. Giacconi, H. Gursky, F. R. Paolini, and B. B. Rossi, Phys. Rev. Lett. 9, 439 (1962).

    ADS  Article  Google Scholar 

  2. R. Giacconi, Rev.Mod. Phys. 75, 995 (2003).

    ADS  Article  Google Scholar 

  3. Y. B. Zeldovich and N. I. Shakura, Sov. Astron. 13, 175 (1969).

    ADS  Google Scholar 

  4. R. Giacconi, H. Gursky, E. Kellogg, E. Schreier, and H. Tananbaum, Astrophys. J. Lett. 167, L67 (1971).

    ADS  Article  Google Scholar 

  5. X- and Gamma-Ray Astronomy, Proceedings of 55th IAU Symposium, Madrid, Spain, 11–13 May, 1972, Ed. by H. Bradt and R. Giacconi, IAU Symp., vol. 55 (1973).

  6. A. Hewish, S. J. Bell, J.D.H. Pilkington, P. F. Scott, and R. A. Collins, Nature (London) 217, 709 (1968).

    ADS  Article  Google Scholar 

  7. T. Gold, Nature (London) 218, 731 (1968).

    ADS  Article  Google Scholar 

  8. P. Goldreich and W. H. Julian, Astrophys. J. 157, 869 (1969).

    ADS  Article  Google Scholar 

  9. N. I. Shakura, Sov. Astron. 16, 756 (1973).

    ADS  Google Scholar 

  10. J. E. Pringle and M. J. Rees, Astron. Astrophys. 21, 1 (1972).

    ADS  Google Scholar 

  11. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  12. D. Lynden-Bell, Nature (London) 223, 690 (1969).

    ADS  Article  Google Scholar 

  13. B. A. Fryxell and R. E. Taam, Astrophys. J. 335, 862 (1988).

    ADS  Article  Google Scholar 

  14. M. Ruffert, Astron. Astrophys. 346, 861 (1999).

    ADS  Google Scholar 

  15. T. Nagae, K. Oka, T. Matsuda, H. Fujiwara, I. Hachisu, and H. M. J. Boffin, Astron. Astrophys. 419, 335 (2004).

    ADS  Article  Google Scholar 

  16. J. Arons and S. M. Lea, Astrophys. J. 207, 914 (1976).

    ADS  Article  Google Scholar 

  17. A. F. Illarionov and R. A. Sunyaev, Astron. Astrophys. 39, 185 (1975).

    ADS  Google Scholar 

  18. D. J. Burnard, J. Arons, and S. M. Lea, Astrophys. J. 266, 175 (1983).

    ADS  Article  Google Scholar 

  19. N. Shakura, K. Postnov, A. Kochetkova, and L. Hjalmarsdotter, Mon. Not. R. Astron. Soc. 420, 216 (2012).

    ADS  Article  Google Scholar 

  20. R. F. Elsner and F. K. Lamb, Astrophys. J. 215, 897 (1977).

    ADS  Article  Google Scholar 

  21. N. I. Shakura, K. A. Postnov, A. Y. Kochetkova, and L. Hjalmarsdotter, Eur. Phys. J. Web of Conf. 64, 2001 (2014).

    Article  Google Scholar 

  22. H. Inoue, Y. Ogawara, I. Waki, T. Ohashi, S. Hayakawa, H. Kunieda, F. Nagase, and H. Tsunemi, Publ. Astron. Soc. Jpn. 36, 709 (1984).

    ADS  Google Scholar 

  23. I. Kreykenbohm, P. Kretschmar, J. Wilms, R. Staubert, E. Kendziorra, D. E. Gruber, W. A. Heindl, and R. E. Rothschild, Astron. Astrophys. 341, 141 (1999).

    ADS  Google Scholar 

  24. I. Kreykenbohm, J. Wilms, P. Kretschmar, J. M. Torrejon, K. Pottschmidt, M. Hanke, A. Santangelo, C. Ferrigno, and R. Staubert, Astron. Astrophys. 492, 511 (2008).

    ADS  Article  Google Scholar 

  25. V. Doroshenko, A. Santangelo, and V. Suleimanov, Astron. Astrophys. 529, A52 (2011).

  26. E.Gogus,_I. Kreykenbohm, and T.M. Belloni, Astron. Astrophys. 525, L6 (2011).

    ADS  Article  Google Scholar 

  27. J. J. M. int Zand, T. E. Strohmayer, and A. Baykal, Astrophys. J. Lett. 479, L47 (1997).

    ADS  Article  Google Scholar 

  28. S. S. ahiner, S. C. Inam, and A. Baykal, Mon. Not. R. Astron. Soc. 421, 2079 (2012).

    ADS  Article  Google Scholar 

  29. F. Furst, I. Kreykenbohm, S. Suchy, L. Barragan, J. Wilms, R. E. Rothschild, and K. Pottschmidt, Astron. Astrophys. 525, A73 (2011).

    ADS  Article  Google Scholar 

  30. P. Kretschmar, I. Kreykenbohm, J. Wilms, R. Staubert, W. A. Heindl, D. E. Gruber, and R. E. Rothschild, in Proceedings of the 5th Compton Symposium, Ed. by M. L.McConnell and J. M. Ryan, AIP Conf. Ser. 510, 163 (2000).

    ADS  Article  Google Scholar 

  31. D. Klochkov, R. Staubert, A. Santangelo, R. E. Rothschild, and C. Ferrigno, Astron.Astrophys. 532, A126 (2011).

    ADS  Article  Google Scholar 

  32. A. N. Parmar, N. E.White, and L. Stella, Astrophys. J. 338, 373 (1989).

    ADS  Article  Google Scholar 

  33. F. K. Lamb, C. J. Pethick, and D. Pines, Astrophys. J. 184, 271 (1973).

    ADS  Article  Google Scholar 

  34. N. Shakura, K. Postnov, and L. Hjalmarsdotter, Mon. Not. R. Astron. Soc. 428, 670 (2013).

    ADS  Article  Google Scholar 

  35. L. Sidoli, P. Romano, S. Mereghetti, A. Paizis, S. Vercellone, V. Mangano, and D. Gotz, Astron. Astrophys. 476, 1307 (2007).

    ADS  Article  Google Scholar 

  36. L. J. Pellizza, S. Chaty, and I. Negueruela, Astron. Astrophys. 455, 653 (2006).

    ADS  Article  Google Scholar 

  37. S. Chaty, F. Rahoui, C. Foellmi, J. A. Tomsick, J. Rodriguez, and R. Walter, Astron. Astrophys. 484, 783 (2008).

    ADS  Article  Google Scholar 

  38. F. Rahoui, S. Chaty, P.-O. Lagage, and E. Pantin, Astron. Astrophys. 484, 801 (2008).

    ADS  Article  Google Scholar 

  39. S. Molkov, N. Mowlavi, A. Goldwurm, A. Strong, N. Lund, J. Paul, and T. Oosterbroek, Astron. Telegram 176, 1 (2003).

    ADS  Google Scholar 

  40. R. A. Sunyaev, S. A. Grebenev, A. A. Lutovinov, J. Rodriguez, S. Mereghetti, D. Gotz, and T. Courvoisier, Astron. Telegram 190, 1 (2003).

    ADS  Google Scholar 

  41. S. A. Grebenev, A. A. Lutovinov, and R. A. Sunyaev, Astron. Telegram 192, 1 (2003).

    ADS  Google Scholar 

  42. V. Sguera, E. J. Barlow, A. J. Bird, D. J. Clark, A. J. Dean, A. B. Hill, L. Moran, S. E. Shaw, D. R. Willis, A. Bazzano, P. Ubertini, and A. Malizia, Astron. Astrophys. 444, 221 (2005).

    ADS  Article  Google Scholar 

  43. I. Negueruela, D. M. Smith, P. Reig, S. Chaty, and J. M. Torrejon, in Proceedings of the X-Ray Universe 2005, Ed. by A. Wilson, ESA SP-604 (ESA PublicationsDivision,Noordwijk, 2006), Vol. 1, p. 165.

  44. P. Romano, V. La Parola, S. Vercellone, G. Cusumano, L. Sidoli, H. A. Krimm, C. Pagani, P. Esposito, E. A. Hoversten, J. A. Kennea, K. L. Page, D. N. Burrows, and N. Gehrels, Mon. Not. R. Astron. Soc. 410, 1825 (2011).

    ADS  Google Scholar 

  45. P. Romano, H. A. Krimm, D. M. Palmer, L. Ducci, P. Esposito, S. Vercellone, P. A. Evans, C. Guidorzi, V. Mangano, J. A. Kennea, S. D. Barthelmy, D. N. Burrows, and N. Gehrels, Astron. Astrophys. 562, A2 (2014).

    ADS  Article  Google Scholar 

  46. L. Sidoli, in Proceedings of the 9th INTEGRAL Workshop (2012), id.11. http://pos.sissa.it/cgibin/ reader/conf.cgi?confid=176

  47. S. A. Grebenev and R. A. Sunyaev, Astron. Lett. 33, 149 (2007).

    ADS  Article  Google Scholar 

  48. E. Bozzo, M. Falanga, and L. Stella, Astrophys. J. 683, 1031 (2008).

    ADS  Article  Google Scholar 

  49. J. J. M. in’t Zand, Astron. Astrophys. 441, L1 (2005).

    ADS  Article  Google Scholar 

  50. R. Walter and J. Zurita Heras, Astron. Astrophys. 476, 335 (2007).

    ADS  Article  Google Scholar 

  51. I. Negueruela, J. M. Torrejon, P. Reig, M. Ribo, and D. M. Smith, in A Population Explosion: The Nature and Evolution of X-Ray Binaries in Diverse Environments, Ed. by R. M. Bandyopadhyay, S. Wachter, D. Gelino, and C. R. Gelino, AIP Conf. Proc. 1010, 252 (2008).

    ADS  Google Scholar 

  52. L. Ducci, L. Sidoli, S. Mereghetti, A. Paizis, and P. Romano, Mon. Not. R. Astron. Soc. 398, 2152 (2009).

    ADS  Article  Google Scholar 

  53. L. M. Oskinova, A. Feldmeier, and P. Kretschmar, Mon. Not. R. Astron. Soc. 421, 2820 (2012).

    ADS  Article  Google Scholar 

  54. N. Shakura, K. Postnov, L. Sidoli, and A. Paizis, Mon. Not. R. Astron. Soc. 442, 2325 (2014).

    ADS  Article  Google Scholar 

  55. L. Sidoli, P. Romano, V. Mangano, A. Pellizzoni, J. A. Kennea, G. Cusumano, S. Vercellone, A. Paizis, D. N. Burrows, and N. Gehrels, Astrophys. J. 687, 1230 (2008).

    ADS  Article  Google Scholar 

  56. A. Paizis and L. Sidoli, Mon. Not. R. Astron. Soc. 439, 3439 (2014).

    ADS  Article  Google Scholar 

  57. R. Krivonos, S. Tsygankov, A. Lutovinov, M. Revnivtsev, E. Churazov, and R. Sunyaev, Astron. Astrophys. 545, A27 (2012).

    Article  Google Scholar 

  58. J. Braithwaite, arXiv e-prints (2013).

  59. L. M. Zelenyi and A. V. Milovanov, Phys. Usp. 47, 1 (2004).

    ADS  Article  Google Scholar 

  60. R. Bruno and V. Carbone, Living Rev. Solar Phys. 10, 2 (2013).

    ADS  Article  Google Scholar 

  61. J. Puls, J. S. Vink, and F. Najarro, Astron. Astrophys. Rev. 16, 209 (2008).

    ADS  Article  Google Scholar 

  62. J.W. Dungey, Phys. Rev. Lett. 6, 47 (1961).

    ADS  Article  Google Scholar 

  63. H. J. G. L. M. Lamers, E. P. J. van den Heuvel, and J. A. Petterson, Astron. Astrophys. 49, 327 (1976).

    ADS  Google Scholar 

  64. E. A. Vitrichenko, D. K. Nadyozhin, and T. L. Razinkova, Astron. Lett. 33, 251 (2007).

    ADS  Article  Google Scholar 

  65. E. G. Zweibel and M. Yamada, Ann. Rev. Astron. Astrophys. 47, 291 (2009).

    ADS  Article  Google Scholar 

  66. F. Furst, I. Kreykenbohm, K. Pottschmidt, J. Wilms, M. Hanke, R. E. Rothschild, P. Kretschmar, N. S. Schulz, D. P. Huenemoerder, D. Klochkov, and R. Staubert, Astron. Astrophys. 519, A37 (2010).

    ADS  Article  Google Scholar 

  67. N. I. Shakura, K. A. Postnov, A. Y. Kochetkova, and L. Hjalmarsdotter, Phys. Usp. 56, 321 (2013).

    ADS  Article  Google Scholar 

  68. A. Gonzalez-Galan, E. Kuulkers, P. Kretschmar, S. Larsson, K. Postnov, A. Kochetkova, and M. H. Finger, Astron. Astrophys. 537, A66 (2012).

    ADS  Article  Google Scholar 

  69. K. A. Postnov, N. I. Shakura, A. Y. Kochetkova, and L. Hjalmarsdotter, Eur. Phys. J. Web of Conf. 64, 2002 (2014).

    Article  Google Scholar 

  70. S. P. Drave, A. J. Bird, L. Sidoli, V. Sguera, A. Bazzano, A. B. Hill, and M. E. Goossens, Mon. Not. R. Astron. Soc. 439, 2175 (2014).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Shakura.

Additional information

The text was submitted by the authors in English.

Paper was presented at the international conference in honor of Ya.B. Zeldovich 100th Anniversary “Subatomic Particles, Nucleons, Atoms, Universe: Processes and Structure” held in Minsk, Belarus, in March 10–14, 2014. Published by the recommendation of the special Editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shakura, N.I., Postnov, K.A., Kochetkova, A.Y. et al. Wind accretion: Theory and observations. Astron. Rep. 59, 645–655 (2015). https://doi.org/10.1134/S1063772915070112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772915070112

Keywords

  • Neutron Star
  • Astronomy Report
  • Magnetic Reconnection
  • Accretion Rate
  • Stellar Wind