Skip to main content

On binary driven hypernovae and their nested late X-ray emission

Abstract

The induced gravitational collapse (IGC) paradigm addresses energetic (1052-1054 erg), long gamma-ray bursts (GRBs) associated to supernovae (SNe) and proposes as their progenitors tight binary systems composed of an evolved FeCO core and a companion neutron star (NS). Their emission is characterized by four specific episodes: Episode 1, corresponding to the on-set of the FeCO SN explosion and the accretion of the ejecta onto the companion NS; Episode 2, related the collapse of the companionNS to a black hole (BH) and to the emission of a long GRB; Episode 3, observed in X-rays and characterized by a steep decay, a plateau phase and a late power-law decay; Episode 4, corresponding to the optical SN emission due to the 56Ni decay. We focus on Episode 3 and we show that, from the thermal component observed during the steep decay of the prototype GRB 090618, the emission region has a typical dimension of ~1013 cm, which is inconsistent with the typical size of the emitting region of GRBs, e.g., ~1016 cm. We propose, therefore, that the X-ray afterglow emission originates from a spherically symmetric SN ejecta expanding at G ˜ 2 or, possibly, from the accretion onto the newly formed black hole, and we name these systems “binary driven hypernovae” (BdHNe). This interpretation is alternative to the traditional afterglow model based on the GRB synchrotron emission from a collimated jet outflow, expanding at ultra-relativistic Lorentz factor of G ~ 102-103 and originating from the collapse of a single object. We show then that the rest-frame energy band 0.3-10 keV X-ray luminosities of three selected BdHNe, GRB 060729, GRB 061121, and GRB 130427A, evidence a precisely constrained “nested” structure and satisfy precise scaling laws between the average prompt luminosity, 〈Liso〉, and the luminosity at the end of the plateau, La, as functions of the time at the end of the plateau. All these features extend the applicability of the “cosmic candle” nature of Episode 3. The relevance of r-process in fulfilling the demanding scaling laws and the nested structure are indicated.

This is a preview of subscription content, access via your institution.

References

  1. T. Piran, Rev. Mod. Phys. 76, 1143 (2005). http://link.aps.org/doi/10.1103/ RevMod- Phys.76.1143

    ADS  Article  Google Scholar 

  2. R. W. Klebesadel, in Gamma Ray Bursts, Ed. by C.Ho, R. I. Epstein, and E. E. Fenimore (Cambridge Univ. Press, 1992), pp. 161–168.

  3. J.-P. Dezalay, C. Barat, R. Talon, R. Syunyaev, O. Terekhov, and A. Kuznetsov, in American Institute of Physics Conference Series, Vol. 265, Ed. by W. S. Paciesas and G. J. Fishman (American Institute of Physics, Huntsville, Alabama, 1992), pp. 304–309.

  4. C. Kouveliotou, C. A. Meegan, G. J. Fishman, N. P. Bhat, M. S. Briggs, T. M. Koshut, W. S. Paciesas, and G. N. Pendleton, Astrophys. J. Lett. 413, L101 (1993).

    ADS  Article  MATH  Google Scholar 

  5. M. Tavani, Astrophys. J. Lett. 497, L21 (1998), astroph/ 9802192.

    ADS  Article  Google Scholar 

  6. G. S. Bisnovatyi-Kogan, V. S. Imshennik, D. K. Nadyozhin, and V. M. Chechetkin, Astrophys. Space Sci. 35, 23 (1975).

    ADS  Article  Google Scholar 

  7. E. Pian, L. Amati, L. A. Antonelli, R. C. Butler, E. Costa, G. Cusumano, J. Danziger, M. Feroci, F. Fiore, F. Frontera, et al., Astrophys. J. 536, 778 (2000), astro-ph/9910235.

    ADS  Article  Google Scholar 

  8. T. J. Galama, P. M. Vreeswijk, J. van Paradijs, C. Kouveliotou, T. Augusteijn, H. Bohnhardt, J. P. Brewer, V. Doublier, J.-F. Gonzalez, B. Leibundgut, et al., Nature (London) 395, 670 (1998), astro-ph/9806175.

    ADS  Article  Google Scholar 

  9. J. Hjorth and J. S. Bloom, in Gamma-Ray Bursts, Cambridge Astrophysics Series, Vol. 51, Ed. by C. Kouveliotou, R. A.M. J. Wijers, and S. E.Woosley (Cambridge Univ. Press, 2012), pp. 169–190.

  10. K. Nomoto and M. Hashimoto, Phys. Rep. 163, 13 (1988).

    ADS  Article  Google Scholar 

  11. K. Nomoto, H. Yamaoka, O. R. Pols, E. P. J. van den Heuvel, K. Iwamoto, S. Kumagai, and T. Shigeyama, Nature (London) 371, 227 (1994).

    ADS  Article  Google Scholar 

  12. K. Iwamoto, K. Nomoto, P. Hoflich, H. Yamaoka, S. Kumagai, and T. Shigeyama, Astrophys. J. Lett. 437, L115 (1994).

    ADS  Article  Google Scholar 

  13. R. Ruffni, M. G. Bernardini, C. L. Bianco, L. Caito, P. Chardonnet,M.G. Dainotti, R. Fraschetti, R.Guida, G. Vereshchagin, and S.-S. Xue, in ESA Special Publication, Vol. 622 (ESA, 2007), p. 561, 0705.2456.

  14. R. Ruffni, M. G. Bernardini, C. L. Bianco, L. Caito, P. Chardonnet, C. Cherubini, M. G. Dainotti, F. Fraschetti, A. Geralico, R. Guida, et al., in Proceedings of the 11th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Ed. by H. Kleinert, R. T. Jantzen, and R. Ruffni (2008), pp. 368–505; arXiv:0804.2837.

  15. J. A. Rueda and R. Ruffni, Astrophys. J. Lett. 758, L7 (2012); arXiv:1206.1684.

    ADS  Article  Google Scholar 

  16. L. Izzo, J. A. Rueda, and R. Ruffni, Astron. Astrophys. 548, L5 (2012); arXiv:1206.2887.

    ADS  Article  Google Scholar 

  17. L. Izzo, R. Ruffni, A. V. Penacchioni, C. L. Bianco, L. Caito, S. K. Chakrabarti, J. A. Rueda, A. Nandi, and B. Patricelli, Astron. Astrophys. 543, A10 (2012), arXiv:1202.4374.

    ADS  Article  Google Scholar 

  18. A. V. Penacchioni, R. Ruffni, L. Izzo, M. Muccino, C. L. Bianco, L. Caito, B. Patricelli, and L. Amati, Astron. Astrophys. 538, A58 (2012); arXiv:1112.2970.

    ADS  Article  MATH  Google Scholar 

  19. A. V. Penacchioni, R. Ruffni, C. L. Bianco, L. Izzo, M.Muccino,_G. B. Pisani, and J. A. Rueda, Astron. Astrophys. 551, A133 (2013); arXiv:1301.6014.

    ADS  Article  Google Scholar 

  20. R. Ruffni, J. A. Rueda, C. Barbarino, C. L. Bianco, H. Dereli, M. Enderli, L. Izzo,M.Muccino, A. V. Penacchioni, G. B. Pisani, et al., arXiv: 1311.7432 (2013).

  21. R. Ruffni, G. Vereshchagin, and S.-S. Xue, Phys. Rep. 487, 1 (2010); arXiv:0910.0974.

    ADS  Article  Google Scholar 

  22. D. Arnett, Space Sci. Rev. 78, 559 (1996).

    ADS  Google Scholar 

  23. G. B. Pisani, L. Izzo, R. Ruffni, C. L. Bianco, M. Muccino, A. V. Penacchioni, J. A. Rueda, and Y. Wang, Astron. Astrophys. 552, L5 (2013); arXiv:1304.1764.

    ADS  Article  Google Scholar 

  24. K. L. Page, R. L. C. Starling, G. Fitzpatrick, S. B. Pandey, J. P. Osborne, P. Schady, S. McBreen, S. Campana, T. N. Ukwatta, C. Pagani, et al., Mon. Not. R. Astron. Soc. 416, 2078 (2011).

    ADS  Article  Google Scholar 

  25. C. L. Bianco, R. Ruffni, and S.-S. Xue, Astron. Astrophys. 368, 377 (2001), astro-ph/0102060.

    ADS  Article  MATH  Google Scholar 

  26. A. V. Penacchioni, R. Ruffni, C. L. Bianco, L. Izzo, M. Muccino, G. B. Pisani, and J. A. Rueda, Astron. Astrophys. 551, A133 (2013); arXiv:1301.6014.

    ADS  Article  MATH  Google Scholar 

  27. D. Xu, A. de Ugarte Postigo, S. Schulze, J. Jessen-Hansen, G. Leloudas, T. Kruehler, J. P. U. Fynbo, and P. Jakobsson, GRB Coordinates Network 14478, 1 (2013).

    Google Scholar 

  28. H. Flores, S. Covino, D. Xu, T. Kruehler, J. Fynbo, B. Milvang-Jensen, A. de Ugarte Postigo, L. Kaper, and K. Wiersema, GRB Coordinates Network 14491, 1 (2013).

    Google Scholar 

  29. A. de Ugarte Postigo, D. Xu, G. Leloudas, T. Kruehler, D. Malesani, J. Gorosabel, C. C. Thoene, R. Sanchez-Ramirez, S. Schulze, J. P. U. Fynbo, et al., GRB Coordinates Network 14646, 1 (2013).

    Google Scholar 

  30. A. J. Levan, A. S. Fruchter, J. Graham, N. R. Tanvir, J. Hjorth, J. Fynbo, D. Perley, S. B. Cenko, E. Pian, Z. Cano, et al., GRB Coordinates Network 14686, 1 (2013).

    Google Scholar 

  31. A. M. Watson, N. Butler, A. Kutyrev, W. H. Lee, M. G. Richer, C. Klein, O. Fox, J. X. Prochaska, J. Bloom, A. Cucchiara, et al., GRB Coordinates Network 14666, 1 (2013).

    Google Scholar 

  32. D. Xu, A. de Ugarte Postigo, T. Kruehler, D. Malesani, G. Leloudas, J. P. U. Fynbo, J. Hjorth, S. Schulze, P. Jakobsson, Z. Cano, et al., GRB Coordinates Network 14597, 1 (2013).

    Google Scholar 

  33. J. S. Bloom, D. A. Perley, and H. W. Chen, GRB Coordinates Network 5826, 1 (2006).

    ADS  Google Scholar 

  34. M. G. Dainotti, V. F. Cardone, and S. Capozziello, Mon. Not. R. Astron. Soc. 391, L79 (2008); arXiv:0809.1389.

    ADS  Article  Google Scholar 

  35. M. G. Dainotti, M. Ostrowski, and R. Willingale, Mon. Not. R. Astron. Soc. 418, 2202 (2011); arXiv:1103.1138.

    ADS  Article  Google Scholar 

  36. R. Willingale, P. T. O’Brien, J. P. Osborne, O. Godet, K. L. Page, M. R. Goad, D. N. Burrows, B. Zhang, E. Rol, N. Gehrels, et al., Astrophys. J. 662, 1093 (2007); astro-ph/0612031.

    ADS  Article  Google Scholar 

  37. M. G. Dainotti, V. Fabrizio Cardone, S. Capozziello, M. Ostrowski, and R. Willingale, Astrophys. J. 730, 135 (2011); arXiv:1101.1676.

    ADS  Article  Google Scholar 

  38. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).

    ADS  Article  Google Scholar 

  39. L.-X. Li and B. Paczynski, Astrophys. J. Lett. 507, L59 (1998), astro-ph/9807272.

    ADS  Article  Google Scholar 

  40. H.-T. Janka, T. Eberl, M. Ruffert, and C. L. Fryer, Astrophys. J. Lett. 527, L39 (1999); astro-ph/9908290.

  41. S. Rosswog, R. Speith, and G. A. Wynn, Mon. Not. R. Astron. Soc. 351, 1121 (2004); astro-ph/0403500.

    ADS  Article  Google Scholar 

  42. R. Oechslin, H.-T. Janka, and A. Marek, Astron. Astrophys. 467, 395 (2007); astro-ph/0611047.

    ADS  Article  Google Scholar 

  43. S. Goriely, A. Bauswein, and H.-T. Janka, Astrophys. J. Lett. 738, L32 (2011); arXiv:1107.0899.

    ADS  Article  Google Scholar 

  44. T. Piran, O. Korobkin, and S. Rosswog, arXiv:1401.2166 (2014).

  45. W. D. Arnett, Astrophys. J. 253, 785 (1982).

    ADS  Article  Google Scholar 

  46. B. D. Metzger, G. Martinez-Pinedo, S. Darbha, E. Quataert, A. Arcones, D. Kasen, R. Thomas, P. Nugent, I. V. Panov, and N. T. Zinner, Mon. Not. R. Astron. Soc. 406, 2650 (2010); arXiv:1001.5029.

    ADS  Article  Google Scholar 

  47. S. E. Woosley, Astrophys. J. 405, 273 (1993).

    ADS  Article  Google Scholar 

  48. A. I. MacFadyen and S. E. Woosley, Astrophys. J. 524, 262 (1999); astro-ph/9810274.

    ADS  Article  Google Scholar 

  49. S. E. Woosley and J. S. Bloom, Ann. Rev. Astron. Astrophys. 44, 507 (2006); astro-ph/0609142.

    ADS  Article  MATH  Google Scholar 

  50. R. Sari, T. Piran, and R. Narayan, Astrophys. J. Lett. 497, L17 (1998); astro-ph/9712005.

    ADS  Article  Google Scholar 

  51. P. Meszaros, Rep. Prog. Phys. 69, 2259 (2006); astroph/ 0605208.

    ADS  Article  Google Scholar 

  52. N. Gehrels, E. Ramirez-Ruiz, and D. B. Fox, Ann. Rev. Astron. Astrophys. 47, 567 (2009); arXiv:0909.1531.

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remo Ruffini.

Additional information

The text was submitted by the authors in English.

Paper was presented at the international conference in honor of Ya.B. Zeldovich 100th Anniversary “Subatomic Particles, Nucleons, Atoms, Universe: Processes and Structure” held in Minsk, Belarus, in March 10–14, 2014. Published by the recommendation of the special Editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muccino, M., Ruffini, R., Bianco, C.L. et al. On binary driven hypernovae and their nested late X-ray emission. Astron. Rep. 59, 581–590 (2015). https://doi.org/10.1134/S1063772915070070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772915070070

Keywords

  • Black Hole
  • Neutron Star
  • Astronomy Report
  • Isotropic Energy
  • Lorentz Factor