Skip to main content

Dynamics of a supernova envelope in a cloudy interstellar medium

Abstract

The evolution of a supernova remnant in a cloudy medium as a function of the volume filling factor of the clouds is studied in a three-dimensional axially symmetrical model. The model includes the mixing of heavy elements (metals) ejected by the supernova and their contribution to radiative losses. The interaction of the supernova envelope with the cloudy phase of the interstellar medium leads to nonsimultaneous, and on average earlier, onsets of the radiative phase in different parts of the supernova envelope. Growth in the volume filling factor f leads to a decrease in the time for the transition of the envelope to the radiative phase and a decrease in the envelope’s mean radius, due to the increased energy losses by the envelope in the cloudy medium. When the development of hydrodynamical instabilities in the supernova envelope is efficient, the thermal energy falls as E t ~ t −2.3, for the propagation of the supernova remnant through either a homogeneous or a cloudy medium. When the volume filling factor is f ≳ 0.1, a layer with excess kinetic energy andmomentumforms far behind the global shock front from the supernova, which traps the hot gas of the cavity in the central part of the supernova remnant. Metals ejected by the supernova are also enclosed in the central region of the remnant, where the initial (high) metallicity is essentially preserved. Thus, the interaction of the supernova envelope with the cloudy interstellar medium appreciably changes the dynamics and structure of the distribution of the gas in the remnant. This affects the observational characteristics of the remnant, in particularly, leading to substantial fluctuations of the emissionmeasure of the gas withT > 105 K and the velocity dispersion of the ionized gas.

This is a preview of subscription content, access via your institution.

References

  1. B. G. Elmegreen and J. Scalo, Ann. Rev. Astron. Astrophys. 42, 211 (2004).

    ADS  Article  Google Scholar 

  2. C. F. McKee and J. P. Ostriker, Astrophys. J. 218, 148 (1977).

    ADS  Article  Google Scholar 

  3. R. I. Klein, C. F. McKee, and P. Colella, Astrophys. J. 420, 213 (1994).

    ADS  Article  Google Scholar 

  4. A. Y. Poludnenko, A. Frank, and E. G. Blackman, Astrophys. J. 576, 832 (2002).

    ADS  Article  Google Scholar 

  5. T. W. Hartquist and J. E. Dyson, Astrophys. Space Sci. 144, 615 (1988).

    ADS  Google Scholar 

  6. H. Koyama and S. Inutsuka, Astrophys. J. 532, 980 (2000).

    ADS  Article  Google Scholar 

  7. D. Hollenbach and C. F. McKee, Astrophys. J. 342, 306 (1989).

    ADS  Article  Google Scholar 

  8. Yu. A. Shchekinov, Geophys. Astrophys. Fluid Dyn. 82, 69 (1996).

    ADS  Article  Google Scholar 

  9. E. B. Jenkins, T. M. Tripp, P. R. Woniak, U. J. Sofia, and G. Sonneborn, Astrophys. J. 520, 182 (1999).

    ADS  Article  Google Scholar 

  10. D. M. Meyer, M. Jura, and J. A. Cardelli, Astrophys. J. 493, 222 (1998).

    ADS  Article  Google Scholar 

  11. R. E. Luck, V. V. Kovtyukh, and S. M. Andrievsky, Astron. J. 132, 902 (2006).

    ADS  Article  Google Scholar 

  12. E. A. Karitskaya, N. G. Bochkarev, V. V. Shimansky, and G. A. Galazutdinov, ASP Conf. Ser. 445, 335 (2011).

    ADS  Google Scholar 

  13. T. J. Satterfield, A. M. Katz, A. R. Sibley, G. M. MacAlpine, and A. Uomoto, Astron. J. 144, 27 (2012).

    ADS  Article  Google Scholar 

  14. M. A. de Avillez and M.-M. Mac Low, Astrophys. J. 581, 1047 (2002).

    ADS  Article  Google Scholar 

  15. A. Ferrara, M. Pettini, and Yu. A. Shchekinov, Mon. Not. R. Astron. Soc. 319, 539 (2000).

    ADS  Article  Google Scholar 

  16. S. Yu. Dedikov and Yu. A. Shchekinov, Astron. Rep. 48, 9 (2004).

    ADS  Article  Google Scholar 

  17. S. Yu. Dedikov, Yu. A. Shchekinov, and E. O. Vasiliev, Odessa Astron. Publ. 21, 29 (2008).

    ADS  Google Scholar 

  18. E.O. Vasiliev, S. Yu. Dedikov, and Yu. A. Shchekinov, Astrophys. Bull. 64, 317 (2009).

    ADS  Article  Google Scholar 

  19. E.O. Vasiliev, E. I. Vorobyov, E. E. Matvienko, A. O. Razoumov, and Yu. A. Shchekinov, Astron. Rep. 56, 895 (2012).

    ADS  Article  Google Scholar 

  20. S. Veilleux, G. Cecil, and J. Bland-Hawthorn, Ann. Rev. Astron. Astrophys. 43, 769 (2005).

    ADS  Article  Google Scholar 

  21. S. Recchi and G. Hensler, Astron. Astrophys. 476, 841 (2007).

    ADS  Article  Google Scholar 

  22. J. L. Cooper, G. V. Bicknell, R. S. Sutherland, and J. Bland-Hawthorn, Astrophys. J. 674, 157 (2008).

    ADS  Article  Google Scholar 

  23. B. B. Nath and Yu. A. Shchekinov, Astrophys. J. 777, 12 (2013).

    ADS  Article  Google Scholar 

  24. A. A. Suchkov, V. G. Berman, T. M. Heckman, and D. S. Balsara, Astrophys. J. 463, 528 (1996).

    ADS  Article  Google Scholar 

  25. S. A. Silich, J. Franco, J. Palous, and G. Tenorio- Tagle, Astrophys. J. 468, 722 (1996).

    ADS  Article  Google Scholar 

  26. D. Martizzi, C.-A. Faucher-Giguére, and E. Quataert, Mon. Not. R. Astron. Soc. (2015, in press); arXiv:1409. 4425 [astro-ph.GA] (2014).

    Google Scholar 

  27. A. Harten, SIAM J. Numer. Anal. 1, 1 (1978).

    Google Scholar 

  28. B. van Leer, J. Comput. Phys. 32, 101 (1979).

    ADS  Article  Google Scholar 

  29. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction (Springer, Berlin, 1997).

    Book  Google Scholar 

  30. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman Hall, CRC, Boca Raton, FL, 2001).

    Google Scholar 

  31. B. van Leer, J. Comput. Phys. 23, 263 (1977).

    ADS  Article  Google Scholar 

  32. B. van Leer, J. Comput. Phys. 23, 276 (1977).

    ADS  Article  Google Scholar 

  33. E. O. Vasiliev, Mon. Not. R. Astron. Soc. 414, 3145 (2011).

    ADS  Article  Google Scholar 

  34. R. Wiersma, J. Schaye, and B. D. Smith, Mon. Not. R. Astron. Soc. 393, 99 (2009).

    ADS  Article  Google Scholar 

  35. E. O. Vasiliev, Mon. Not. R. Astron. Soc. 431, 638 (2013).

    ADS  Article  Google Scholar 

  36. R. S. Sutherland and M. A. Dopita, Astrophys. J. Suppl. Ser. 88, 253 (1993).

    ADS  Article  Google Scholar 

  37. M. Spaans and C. Norman, Astrophys. J. 483, 87 (1997).

    ADS  Article  Google Scholar 

  38. O. Gnat and A. Sternberg, Astrophys. J. Suppl. Ser. 168, 213 (2007).

    ADS  Article  Google Scholar 

  39. K.M. Schure, D. Kosenko, J. S. Kaastra, R. Keppens, and J. Vink, Astron. Astrophys. 508, 751 (2009).

    ADS  Article  Google Scholar 

  40. A. Dalgarno and R. A. McCray, Ann. Rev. Astrophys. Astron. 10, 375 (1972).

    ADS  Article  Google Scholar 

  41. G. J. Ferland, K. T. Korista, D. A. Verner, J. W. Ferguson, J. B. Kingdon, and E.M. Verner, Publ. Astron. Soc. Pacif. 110, 761 (1998).

    ADS  Article  Google Scholar 

  42. E. O. Vasiliev, Mon. Not. R. Astron. Soc. 419, 3641 (2012).

    ADS  Article  Google Scholar 

  43. S. A. Woosley and T. A. Weaver, Astrophys. J. Suppl. Ser. 101, 181 (1995).

    ADS  Article  Google Scholar 

  44. E. Tolstoy, V. Hill, and M. Tosi, Ann. Rev. Astron. Astrophys. 47, 371 (2009).

    ADS  Article  Google Scholar 

  45. Ch.-Y. Wang and R. A. Chevalier, Astrophys. J. 549, 1119 (2001).

    ADS  Article  Google Scholar 

  46. E. O. Vasiliev, E. I. Vorobyov, and Yu. A. Shchekinov, Astron. Astrophys. 489, 505 (2008).

    ADS  Article  Google Scholar 

  47. D. P. Cox, Astrophys. J. 78, 159 (1972).

    ADS  Article  Google Scholar 

  48. R. A. Chevalier, Astrophys. J. 188, 501 (1974).

    ADS  Article  Google Scholar 

  49. D. F. Cioffi, C. F. McKee, and E. Bertschinger, Astrophys. J. 334, 252 (1988).

    ADS  Article  Google Scholar 

  50. K. Thornton, M. Gaudlitz, H.-Th. Janka, and M. Steinmetz, Astrophys. J. 500, 95 (1998).

    ADS  Article  Google Scholar 

  51. E. E. Matvienko and Yu. A. Shchekinov, Astron. Rep. 51, 109 (2007).

    ADS  Article  Google Scholar 

  52. C. F. McKee, in Supernovae: A Survey of Current Research, Ed. by M. J. Rees and R. J. Stoneham (Reidel, Dordrecht, 1982), p. 433.

  53. R. L. White and K. S. Long, Astrophys. J. 373, 543 (1990).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Vasiliev.

Additional information

Original Russian Text © V.V. Korolev, E.O. Vasiliev, I.G. Kovalenko, Yu.A. Shchekinov, 2015, published in Astronomicheskii Zhurnal, 2015, Vol. 92, No. 7, pp. 559–577.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korolev, V.V., Vasiliev, E.O., Kovalenko, I.G. et al. Dynamics of a supernova envelope in a cloudy interstellar medium. Astron. Rep. 59, 690–708 (2015). https://doi.org/10.1134/S1063772915070057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772915070057

Keywords

  • Shock Front
  • Astronomy Report
  • Velocity Dispersion
  • Interstellar Medium
  • Emission Measure