Skip to main content
Log in

The motion of a passively gravitating body inside an inhomogeneous elliptical galaxy

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The spatial motion of a passively gravitating body (a star or the center of mass of a globular cluster) inside an inhomogeneous, rotating elliptical galaxy with a homothetic density distribution is considered. A so-called “astrophysical law” is adopted for the density distribution of the luminous part of the elliptical galaxy. The gravitation of the luminous part of the galaxy, taken to be an ellipsoidal body with a homothetic density distribution, is taken into account in the motion of the star (or center of mass of a globular cluster), as well as perturbations due to the gravitation of a homeoid corresponding to an ellipsoidal layer filled with dark matter between the luminous part of the galaxy and the galactic halo. An analog for the Jacobi integral is found, the region of possible motions of the star (or globular-cluster center of mass) determined, and zero-velocity surfaces constructed. The Lyapunov stability of the resulting stationary solutions—libration points—is established. The results are applied to the elliptical galaxies NGC 4472 (M49), NGC 4636, and NGC 4374, which contain large numbers of globular clusters. The results for these galaxies show that exact expressions for the potentials of the luminous part of the elliptical galaxy and the homeoid should be used to find the libration points and investigate their stability, rather than approximate expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Gasanov, Astron. Rep. 56, 469 (2012).

    Article  ADS  Google Scholar 

  2. S. A. Gasanov, Astron. Rep. 58, 167 (2014).

    Article  ADS  Google Scholar 

  3. H. Poincaré, Leçons sur les hypothèses cosmogoniques (Librairie Scientifique A. Hermann et fils, Paris, 1911).

    MATH  Google Scholar 

  4. B. P. Kondrat’ev, Potential Theory. New Methods and Problems with Solutions (Mir, Moscow, 2007; Nauchny Mir, 2008) [in Russian].

    Google Scholar 

  5. B. P. Kondrat’ev, PhD Dissertation in Physics and Mathematics (Moscow Phys.-Tech. Inst., Moscow, 1982).

  6. E. Hubble, Astrophys. J. 71, 231 (1930).

    Article  ADS  Google Scholar 

  7. H. von Zeipel, Ann. Observ. Paris 25, F1 (1908).

    Google Scholar 

  8. P. J. Young, Astron. J. 81, 807 (1976).

    Article  ADS  Google Scholar 

  9. Y. Mellier and G. Mathez, Astron. Astrophys. 175, 1 (1987).

    ADS  Google Scholar 

  10. G. de Vaucouleurs, Ann. d’Astrophys. 11, 247 (1948).

    ADS  Google Scholar 

  11. G. N. Duboshin, Celestial Mechanics. Fundamental Problems and Methods (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  12. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers (Nauka, Moscow, 1984; McGraw-Hill, New York, 1961).

    MATH  Google Scholar 

  13. I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Nauka, Moscow, 1971; Academic, New York, 1980).

    Google Scholar 

  14. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Fizmatlit, Moscow, 2003), Vol. 1 [in Russian].

    Google Scholar 

  15. M. Ya. Vygodskii, Handbook on Higher Mathematics (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  16. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).

    Article  ADS  Google Scholar 

  17. P. Côté, D. E. McLaughlin, J. G. Cohen, and J. P. Blakeslee, Astrophys. J. 591, 850 (2003).

    Article  ADS  Google Scholar 

  18. G. de Vaucouleurs, A. de Vaucouleurs, H. G. Corwin, R. J. Buta, G. Paturel, and P. Fouqué, Third Reference Catalog of Bright Galaxies (Springer, New York, 1991), Vols. 2, 3.

    Book  Google Scholar 

  19. Yu. V. Batrakov, Byull. Inst. Teor. Astron. 6, 524 (1957).

    MathSciNet  Google Scholar 

  20. V. K. Abalakin, Byull. Inst. Teor. Astron. 6, 543 (1957).

    MathSciNet  Google Scholar 

  21. S. G. Zhuravlev, Sov. Astron. 18, 792 (1974).

    ADS  MathSciNet  Google Scholar 

  22. M. G. Lee, H. S. Park, H. S. Hwang, N. Arimoto, N. Tamura, and M. Onodera, Astrophys. J. 709, 1083 (2010).

    Article  ADS  Google Scholar 

  23. N. R. Napolitano, A. J. Romanowsky, M. Capaccioli, N. G. Douglas, M. Arnaboldi, L. Coccato, O. Gerhard, K. Kuijken, M. R. Merrifield, S. P. Bamford, A. Cortesi, P. Das, and K. C. Freeman, Mon. Not. R. Astron. Soc. 411, 2035 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gasanov.

Additional information

Original Russian Text © S.A. Gasanov, 2015, published in Astronomicheskii Zhurnal, 2015, Vol. 92, No. 3, pp. 270–288.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasanov, S.A. The motion of a passively gravitating body inside an inhomogeneous elliptical galaxy. Astron. Rep. 59, 238–255 (2015). https://doi.org/10.1134/S106377291502002X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377291502002X

Keywords

Navigation