Skip to main content
Log in

Modeling of the structure of quiescent areas of the solar atmosphere emitting at 1–100 cm

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A model for quiescent areas of the solar atmosphere corresponding to radiation at wavelengths from 1 cm to 1 m is presented. The model includes a collection of loops of various sizes, spicules, and free (inter-loop) matter. The parameters for the free matter are approximated using the input height dependences of the temperature and electron density in the atmosphere, based on known models for quiescent regions at the center of the solar disk. The model contains 10 loops of the same type with radii R loop from 3100 to 210 000 km, with their occurrence frequency and the electron densities at their apices being the mean values for loops of a specified cluster of sizes. The loop density factor, defined as the number of loops of a given size in a 2R {ogloop} × 2R loop area, lies in the range from six to nine. The height of the beginning of the coronal parts of the loops h 0 is 2275 km. The height profile of the temperature of the coronal part of a loop is given by \(T_{l_p } (h) = T_{\min } + \left( {T_{\max loop} - T_{\min } } \right)\left\{ {\sin \left[ {\frac{\pi } {2}\left( {h - h_0 } \right)/\left( {R_{loop} - h_0 } \right)} \right]} \right\}^{0.25}\), where T min is the temperature of the initial model at height h 0 and T max loop is the temperature of the loop apex. Height profiles for the initial model taking into account (for the density) the pressure at height h 0 were used in the vicinity of the loop feet. The brightness was calculated by summing the brightnesses of individual layers of atmospheric components using a simple logical scheme, taking into account their probabilities and the overall transmission coefficient. The probability characteristics of the atmospheric components were found iteratively, by comparing the computed equatorial brightness distribution with the observational data. Good agreement between the theoretical brightness distributions and observational data obtained on the RATAN-600 telescope, the Nobeyama Radio Heliograph, and the Siberian Solar Radio Telescope has been obtained over a wide range of wavelengths for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Shibasaki, C. E. Alissandrakis, and S. Pohjolainen, Solar Phys. 273, 309 (2011).

    Article  ADS  Google Scholar 

  2. E. Fürst, O. Hachenberg, and W. Hirth, Astron. Astrophys. 36, 123 (1974).

    ADS  Google Scholar 

  3. J. P. Hagen, P. N. Swanson, R. W. Haas, F. L. Wefer, and R. W. Vogt, Solar Phys. 21, 286 (1971).

    Article  ADS  Google Scholar 

  4. N. R. Labrum, J. W. Archer, and C. J. Smith, Solar Phys. 59, 331 (1978).

    Article  ADS  Google Scholar 

  5. P. Lantos and M. R. Kundu, Astron. Astrophys. 21, 119 (1972).

    ADS  Google Scholar 

  6. V. N. Borovik, in Advances in Solar Physics, Ed. by G. Belvedere, M. Rodonò, and G. M. Simnett, Lect. Notes Phys. 432, 185 (1994).

    Article  ADS  Google Scholar 

  7. M. Simon and H. Zirin, Solar Phys. 9, 317 (1969).

    Article  ADS  Google Scholar 

  8. E. Fürst, P. Lantos, and W. Hirth, Solar Phys. 63, 257 (1979).

    Article  ADS  Google Scholar 

  9. V. N. Borovik, M. Sh. Kurbanov, and V. V. Makarov, Sov. Astron. 36, 656 (1992).

    ADS  Google Scholar 

  10. G. Pineau des Forest, Astron. Astrophys. 78, 159 (1979).

    ADS  Google Scholar 

  11. V. V. Zheleznyakov, Radio Emission of the Sun and Planets (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  12. K. V. Getman and M. A. Livshits, Astron. Rep. 40, 104 (1996).

    ADS  Google Scholar 

  13. I. M. Fontenla, E. H. Avrett, and R. Loeser, Astrophys. J. 406, 319 (1993).

    Article  ADS  Google Scholar 

  14. J. A. Klimchuk, Solar Phys. 193, 53 (2000).

    Article  ADS  Google Scholar 

  15. V. N. Borovik, M. Sh. Kurbanov, M. A. Livshits, and B. I. Ryabov, Sov. Astron. 34, 522 (1990).

    ADS  Google Scholar 

  16. M. Loukitcheva, S. K. Solanki, M. Carlsson, and R. F. Stein, Astron. Astrophys. 419, 747 (2004).

    Article  ADS  Google Scholar 

  17. H. Zirin, B. M. Baument, and G. J. Hurford, Astrophys. J. 370, 779 (1991).

    Article  ADS  Google Scholar 

  18. V. M. Bogod, A. S. Grebinskii, and L. V. Opeikina, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 39, 1450 (1996).

    Google Scholar 

  19. A. Nindos, M. R. Kundu, S. M. White, D. E. Gary, K. Shibassaki, and K. P. Dere, Astrophys. J. 527, 415 (1999).

    Article  ADS  Google Scholar 

  20. B. B. Krissinel, Astron. Rep. 49, 939 (2005).

    Article  ADS  Google Scholar 

  21. B. I. Lubyshev, G. Ya. Smolkov, T. A. Treskov, B. B. Krissinel, N. N. Potapov, N. P. Kardapolova, and V. G. Miller, in Structure and Dynamics of Solar Coronae, Ed. by B. P. Filippov (Nauka, Troitsk, Moscow, 1999), p. 306.

  22. C. L. Selhorst, A. V. R. Silva, and J. E. R. Costa, Astron. Astrophys. 420, 1117 (2004).

    Article  ADS  Google Scholar 

  23. V. V. Grechnev, S. V. Lesovoi, G. Ya. Smolkov, B. B. Krissinel, V. G. Zandanov, A. T. Altyntsev, N. N. Kardapolova, R. Y. Sergeev, A. M. Uralov, V. P. Maksimov, and B. I. Lubyshev, Solar Phys. 216, 239 (2003).

    Article  ADS  Google Scholar 

  24. M. R. Kundu, A. P. Rao, F. T. Erskine, and J. D. Bregman, Astrophys. J. 234, 1122 (1979).

    Article  ADS  Google Scholar 

  25. K. A. Marsh, G. J. Hurford, and H. Zirin, Astron. Astrophys. 94, 67 (1981).

    ADS  Google Scholar 

  26. S. Serio, G. Peres, G. S. Vaiana, L. Golub, and R. Rosner, 243, 288 (1981).

    Google Scholar 

  27. H. M. Oluseyi, A. B. C. Walker, D. I. Santiago, R. B. Hoover, and T. W. Barber, Astrophys. J. 527, 992 (1999).

    Article  ADS  Google Scholar 

  28. M. J. Aschwanden, C. J. Schrijver, and D. Alexander, Astrophys. J. 550, 1036 (2001).

    Article  ADS  Google Scholar 

  29. D. D. Lenz, E. E. Deluca, L. Golub, R. Rosner, and J. A. Bookbinder, Astrophys. J. Lett. 517, L155 (1999).

    Article  ADS  Google Scholar 

  30. M. Aubier, Y. Leblanc, and A. Boishhot, Astron. Astrophys. 12, 435 (1971).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Krissinel’.

Additional information

Original Russian Text © B.B. Krissinel’, 2015, published in Astronomicheskii Zhurnal, 2015, Vol. 92, No. 1, pp. 66–79.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krissinel’, B.B. Modeling of the structure of quiescent areas of the solar atmosphere emitting at 1–100 cm. Astron. Rep. 59, 58–71 (2015). https://doi.org/10.1134/S1063772915010060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772915010060

Keywords

Navigation