Skip to main content
Log in

Transition regions between stable periodic solutions of the general three-body problem

  • Published:
Astronomy Reports Aims and scope Submit manuscript


The behavior of triple systems in the transition zones located between regions of stability is studied in the framework of the general three-body problem with equal masses and zero angular momentum. It is well known that there are exist three stable periodic orbits, namely, the Schubart orbit for the rectilinear problem, the Broucke orbit for the isosceles problem, and the Moore eight-figure orbit. In the space of the initial conditions, these orbits are surrounded by sets of points where bounded motions are observed over substantial time intervals. The transition zones between the Schubart and Moore orbits and the Moore and Broucke orbits are studied. It is shown that the boundaries of the regions of stability can be either smooth and sharp or diffuse. Beyond these boundary regions, the dynamical evolution of triple systems results in a distant ejection of one of the components, or the decay of the system. The distribution of the times when the stability is lost is constructed, and obeys a power law for long time intervals. Three stages in the evolution of an unstable triple system are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. C. Marchal, The Three-Body Problem (Elsevier, Amsterdam, 1990).

    MATH  Google Scholar 

  2. M. Valtonen and H. Karttunen, The Three-Body Problem (Cambridge Univ. Press, Cambridge, 2006).

    Book  MATH  Google Scholar 

  3. A. I. Martynova, V. V. Orlov, A. V. Rubinov, L. L. Sokolov, and I. I. Nikiforov, Dynamics of Triple Systems (SPb. Gos. Univ., St. Petersburg, 2010) [in Russian].

    Google Scholar 

  4. J. von Schubart, Astron. Nachr. 283, 17 (1956).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. R. Broucke, Astron. Astrophys. 73, 303 (1979).

    ADS  MATH  Google Scholar 

  6. C. Moore, Phys. Rev. Lett. 70, 3675 (1993).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. A. I. Martynova, V. V. Orlov, and A. V. Rubinov, Astron. Rep. 53, 710 (2009).

    Article  ADS  Google Scholar 

  8. M. Šuvakov and V. Dmitrašinović, Phys. Rev. Lett. 110, 114301 (2013).

    Article  Google Scholar 

  9. R. Bulirsch and J. Stoer, Num. Math. 8, 1 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  10. S. J. Aarseth and K. Zare, Celest. Mech. 10, 185 (1974).

    Article  ADS  MATH  Google Scholar 

  11. S. J. Aarseth, Gravitational N-Body Simulations. Tools and Algorithms (Cambridge Univ. Press, Cambridge, 2003).

    Book  MATH  Google Scholar 

  12. D. J. Urminsky and D. C. Heggie, Mon. Not. R. Astron. Soc. 392, 1051 (2009).

    Article  ADS  Google Scholar 

  13. V. V. Orlov, A. V. Rubinov, and I. I. Shevchenko, Mon. Not. R. Astron. Soc. 408, 1623 (2010).

    Article  ADS  Google Scholar 

  14. A. V. Bogomolov, S. A. Pavluchenko, and A. V. Toporensky, arXiv: 1101.0399 [astro-ph.SR] (2011).

  15. S. A. Pavluchenko, arXiv: 1103.0458 [astro-ph.SR] (2011).

  16. A. V. Mel’nikov, V. V. Orlov, and I. I. Shevchenko, Astron. Rep. 57, 429 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to P. P. Iasko.

Additional information

Original Russian Text © P.P. Iasko, V.V. Orlov, 2014, published in Astronomicheskii Zhurnal, 2014, Vol. 91, No. 11, pp. 969–977.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iasko, P.P., Orlov, V.V. Transition regions between stable periodic solutions of the general three-body problem. Astron. Rep. 58, 860–868 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: