Skip to main content
Log in

Mass-loss rates of “hot-Jupiter” exoplanets with various types of gaseous envelopes

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

According to the compuations results obtained by Bisikalo et al. (2013) for the gas-dynamical effect of stellar winds on exoplanet atmospheres, three types of gaseous envelopes can form around hot Jupiters: closed, quasi-closed, and open. The type of envelope that forms depends on the position of the frontal collision point (where the dynamical pressure of the wind is equal to the pressure of the surrounding atmosphere) relative to the Roche-lobe boundaries. Closed envelopes are formed around planets whose atmospheres lie completely within their Roche lobes. If the frontal collision point is located outside the Roche lobe, the atmospheric material begins to flow out through the Lagrangian points L1 and L2, which can result in the formation of quasi-closed (if the dynamical pressure of the stellar wind stops the outflow through L1) or open gaseous envelopes. The example of the typical hot Jupiter HD 209458b is considered for four sets of atmospheric parameters, to determine the mass-loss rates for the different types of envelopes arising with these parameters. The mass-loss rates based on the modeling results were estimated to be ≤ 109 g/s for a closed atmosphere, ≃ 3 × 109 g/s for a quasi-closed atmosphere, and ≃ 3 × 1010 g/s for an open atmosphere. The matter in the closed and quasi-closed atmospheres flows out mainly through L2, and the matter in open envelopes primarily through L1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, G. E. Ballester, R. Ferlet, G. Hébrard, and M. Mayor, Nature 422, 143 (2003).

    Article  ADS  Google Scholar 

  2. L. Ben-Jaffel, Astrophys. J. Lett. 671, L61 (2007).

    Article  ADS  Google Scholar 

  3. A. Vidal-Madjar, J.-M. Désert, A. Lecavelier des Etangs, G. Hébrard, G. E. Ballester, D. Ehrenreich, R. Ferlet, J. C. McConnell, M. Mayor, and C. D. Parkinson, Astrophys. J. Lett. 604, L69 (2004).

    Article  ADS  Google Scholar 

  4. L. Ben-Jaffel and S. Sona Hosseini, Astrophys. J. 709, 1284 (2010).

    Article  ADS  Google Scholar 

  5. J. L. Linsky, H. Yang, K. France, C. S. Froning, J. C. Green, J. T. Stocke, and S. N. Osterman, Astrophys. J. 717, 1291 (2010).

    Article  ADS  Google Scholar 

  6. D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).

    Article  ADS  Google Scholar 

  7. L. Fossati, C. A. Haswell, C. S. Froning, L. Hebb, S. Holmes, U. Kolb, Ch. Helling, A. Carter, P. Wheatley, A. Collier Cameron, B. Loeillet, D. Pollacco, R. Street, H. C. Stempels, E. Simpson, S. Udry, Y. C. Joshi, R. G. West, I. Skillen, and D. Wilson, Astrophys. J. Lett. 714, L222 (2010).

    Article  ADS  Google Scholar 

  8. D. Bisikalo, P. Kaygorodov, D. Ionov, V. Shematovich, H. Lammer, and L. Fossati, Astrophys. J. 764, 19 (2013).

    Article  ADS  Google Scholar 

  9. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).

    Article  ADS  Google Scholar 

  10. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  11. M. Mitsumoto, B. Jahanara, T. Matsuda, K. Oka, D.V. Bisikalo, E. Yu. Kilpio, H.M. J. Boffin, A. A. Boyarchuk, and O. A. Kuznetsov, Astron. Rep. 49, 884 (2005).

    Article  ADS  Google Scholar 

  12. T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).

    Article  ADS  Google Scholar 

  13. G. L. Withbroe, Astrophys. J. 325, 442 (1988).

    Article  ADS  Google Scholar 

  14. V. I. Shematovich, Solar Syst. Res. 44, 96 (2010).

    Article  ADS  Google Scholar 

  15. R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).

    Article  ADS  Google Scholar 

  16. T.T. Koskinen, R.V. Yelle, P. Lavvas, and N. K. Lewis, Astrophys. J. 723, 116 (2010).

    Article  ADS  Google Scholar 

  17. A. García Muñoz, Planet. Space Sci. 55, 1426 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Bisikalo.

Additional information

Original Russian Text © A.A. Cherenkov, D.V. Bisikalo, P.V. Kaigorodov, 2014, published in Astronomicheskii Zhurnal, 2014, Vol. 91, No. 10, pp. 775–784.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherenkov, A.A., Bisikalo, D.V. & Kaigorodov, P.V. Mass-loss rates of “hot-Jupiter” exoplanets with various types of gaseous envelopes. Astron. Rep. 58, 679–687 (2014). https://doi.org/10.1134/S1063772914100047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772914100047

Keywords

Navigation