Skip to main content

Stability of the multiple star system ι UMa (ADS 7114)


The physical and orbital parameters of the quadruple star system ι UMa (HD 76644 = ADS 7114) were determined earlier, when it was concluded based on modeling the system’s dynamics and applying theoretical stability criteria that the system was probably unstable. Here the stability of the ι UMa system is studied by calculating the Lyapunov characteristic exponents for representative sets of parameters and initial conditions. The conclusions on the system’s stability (or instability) based on various stability criteria and the calculated Lyapunov exponents are compared. The instability of the system as a whole is confirmed rigorously based on massive computations of the Lyapunov exponents. This system appears to be the only known multiple system whose instability has been rigorously established. The Lyapunov time-disruption time statistical relations are constructed, which show that the Hamiltonian intermittency of the second kind dominates. Typical disruption times are shorter than 1000 years, and the Lyapunov times are shorter than 100 years.

This is a preview of subscription content, access via your institution.


  1. R. Ya. Zhuchkov, E. V. Malogolovets, O. V. Kiyaeva, V. V. Orlov, I. F. Bikmaev, and Yu. Yu. Balega, Astron. Rep. 56, 512 (2012).

    ADS  Article  Google Scholar 

  2. O. J. Eggen, Ann. Rev. Astron. Astrophys. 5, 105 (1967).

    ADS  Article  Google Scholar 

  3. J. Hopmann, Mitt. Sternw. Wien 14, 18 (1973).

    Google Scholar 

  4. A. A. Kiselev, Theoretic Foundations of Photographic Astrometry (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  5. V. V. Orlov and R. Ya. Zhuchkov, Astron. Rep. 49, 201 (2005).

    ADS  Article  Google Scholar 

  6. R. Ya. Zhuchkov and V. V. Orlov, Astron. Rep. 49, 274 (2005).

    ADS  Article  Google Scholar 

  7. R. Ya. Zhuchkov, V. V. Orlov, and A. V. Rubinov, Astron. Rep. 50, 62 (2006).

    ADS  Article  Google Scholar 

  8. A. Lichtenberg and M. Lieberman, Regular and Chaotic Dynamics (Springer, New York, 1992; Mir, Moscow, 1984).

    Book  MATH  Google Scholar 

  9. E. A. Popova and I. I. Shevchenko, Astrophys. J. 769, 152 (2013).

    ADS  Article  Google Scholar 

  10. A. Milani and A. M. Nobili, Celest. Mech. Dyn. Astron. 56, 323 (1993).

    ADS  Article  Google Scholar 

  11. A. V. Melnikov, V. V. Orlov, and I. I. Shevchenko, Astron. Rep. 57, 429 (2013).

    ADS  Article  Google Scholar 

  12. E. M. Standish, Celest. Mech. 4, 44 (1971).

    ADS  Article  MATH  MathSciNet  Google Scholar 

  13. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems (Springer, Berlin, 1987).

    Book  MATH  Google Scholar 

  14. S. J. Aarseth, Gravitational N-body Simulations. Tools and Algorithms (Cambridge Univ. Press, Cambridge, 2003).

    Book  MATH  Google Scholar 

  15. M. Valtonen, A. Myllari, V. Orlov, and A. Rubinov, in Dynamical Evolution of Dense Stellar Systems, Proc. IAU Symp. 246, 209 (2007).

    ADS  Google Scholar 

  16. A. Tokovinin, Rev. Mex. Astron. Astrofis. 21, 7 (2004).

    Google Scholar 

  17. A. H. Batten, Binary and Multiple Systems of Stars (Pergamon, Oxford, 1973; Mir, Moscow, 1976).

    Google Scholar 

  18. I. I. Shevchenko and A. V. Melnikov, JETP Lett. 77, 642 (2003).

    ADS  Article  Google Scholar 

  19. H. F. von Bremen, F. E. Udwadia, and W. Proskurowski, Physica D 101, 1 (1997).

    ADS  Article  MATH  MathSciNet  Google Scholar 

  20. I. I. Shevchenko and V. V. Kouprianov, Astron. Astrophys. 394, 663 (2002).

    ADS  Article  MATH  Google Scholar 

  21. V. V. Kouprianov and I. I. Shevchenko, Astron. Astrophys. 410, 749 (2003).

    ADS  Article  Google Scholar 

  22. V. V. Kouprianov and I. I. Shevchenko, Icarus 176, 224 (2005).

    ADS  Article  Google Scholar 

  23. I. I. Shevchenko, Phys. Rev. E 81, 066216 (2010).

    ADS  Article  MathSciNet  Google Scholar 

  24. I. I. Shevchenko, Phys. Lett. A 241, 53 (1998).

    ADS  Article  Google Scholar 

  25. V. V. Orlov, A. V. Rubinov, and I. I. Shevchenko, Mon. Not. R. Astron. Soc. 408, 1623 (2010).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. V. Mel’nikov.

Additional information

Original Russian Text © A.V. Mel’nikov, V.V. Orlov, I.I. Shevchenko, 2014, published in Astronomicheskii Zhurnal, 2014, Vol. 91, No. 9, pp. 735–744.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mel’nikov, A.V., Orlov, V.V. & Shevchenko, I.I. Stability of the multiple star system ι UMa (ADS 7114). Astron. Rep. 58, 640–649 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Lyapunov Exponent
  • Astronomy Report
  • Disruption Time
  • Triple System
  • Orbital Parameter