Skip to main content
Log in

Different-sized dust grains and the chemical evolution of protostellar objects

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Results of modeling the chemical evolution of protostellar objects are presented. The models take into account the existence of different dust populations with distinct grain sizes, total mass fractions, and temperatures. In addition to ”classical” dust grains, the models include an entirely different second dust population, with dust grain sizes of 30 Å and a higher temperature. Two chemical-evolution models are compared, one taking into account only classical dust and the other including both dust populations. The influence of a complex dust composition on the general evolution of the molecular contents of prestellar cores and the abundances of a number of chemical species is studied. At early evolutionary stages, differences are mainly determined by the modification changes in the photoprocesses’ balance due to efficient UV absorption by the second population of dust grains and in collisional reactions with the dust grains. At late stages, distinctions between the models are also determined by the increasing dominance of additional reaction channels. The species that respond to the presence of small grains in different ways are separated into different groups. Allowing for the presence of small grains makes it possible to significantly lower the water abundance in the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Krügel, The Physics of Interstellar Dust (IOP Publ., Bristol, Philadelphia, 2003).

    Book  Google Scholar 

  2. R. Visser, E. F. van Dishoeck, S. D. Doty, and C. P. Dullemond, Astron. Astrophys. 881, 495 (2009).

    Google Scholar 

  3. A. I. Vasyunin, D. A. Semenov, D. S. Wiebe, and Th. Henning, Astrophys. J. 1459, 691 (2009).

    Google Scholar 

  4. E. Herbst and V. I. Shematovich, Astrophys. Space Sci. 285, 725 (2003).

    Article  ADS  Google Scholar 

  5. T. I. Hasegawa, E. Herbst, and Ch. M. Leung, Astrophys. J. Suppl. Ser. 167, 82 (1992).

    Google Scholar 

  6. J. S. Mathis, W. Rumpl, and K. H. Nordsieck, Astrophys. J. 425, 217 (1977).

    Google Scholar 

  7. J. C. Weingartner and B. T. Draine, Astrophys. J. 296, 548 (2001).

    Google Scholar 

  8. A. I. Vasyunin, D. S. Wiebe, T. Birnstiel, S. Zhukovska, Th. Henning, and C. P. Dullemond, Astrophys. J. 17, 727 (2011).

    Google Scholar 

  9. V. Akimkin, S. Zhukovska, D. Wiebe, D. Semenov, Ya. Pavlyuchenkov, A. Vasyunin, T. Birnstiel, and Th. Henning, Astrophys. J. 24, 766 (2013).

    Google Scholar 

  10. K. Acharyya, G. E. Hassel, and E. Herbst, Astrophys. J. 15, 732 (2011).

    Google Scholar 

  11. Ya. N. Pavlyuchenkov, D. S. Wiebe, V. V. Akimkin, M. S. Khramtsova, and Th. Henning, Mon. Not. R. Astron. Soc. 2430, 421 (2012).

    Google Scholar 

  12. O. V. Kochina, D. S. Wiebe, S. V. Kalenskii, and A. I. Vasyunin, Astron. Zh. 91, 90 (2014).

    Google Scholar 

  13. B. T. Draine and H. M. Lee, Astrophys. J. 89, 285 (1984).

    Google Scholar 

  14. J. Woodall, M. Agundez, A. J. Markwick-Kemper, and T. J. Millar, Astron. Astrophys. 466, 1197 (2007).

    Article  ADS  Google Scholar 

  15. T. I. Hasegawa and E. Herbst, Mon. Not. R. Astron. Soc. 261, 83 (1993).

    ADS  Google Scholar 

  16. E. A. Bergin, M. R. Hogerheijde, C. Brinch, J. Fogel, U. A. Yildiz, L. E. Kristensen, E. F. van Dishoeck, T. A. Bell, G. A. Blake, J. Cernicharo, C. Dominik, D. Lis, G. Melnick, D. Neufeld, O. Panic, J. C. Pearson, R. Bachiller, A. Baudry, M. Benedettini, A. O. Benz, P. Bjerkeli, S. Bontemps, J. Braine, S. Bruderer, P. Caselli, C. Codella, F. Daniel, A. M. di Giorgio, S. D. Doty, P. Encrenaz, M. Fich, A. Fuente, T. Giannini, J. R. Goicoechea, Th. de Graauw, F. Helmich, G. J. Herczeg, F. Herpin, T. Jacq, D. Johnstone, J. K. Jorgensen, B. Larsson, R. Liseau, M. Marseille, C. McCoey, B. Nisini, M. Olberg, B. Parise, R. Plume, C. Risacher, J. Santiago-Garcia, P. Saraceno, R. Shipman, M. Tafalla, T. A. van Kempen, R. Visser, S. F. Wampfler, F. Wyrowski, F. van der Tak, W. Jellema, A. G. G. M. Tielens, P. Hartogh, J. Stutzki, and R. Szczerba, Astron. Astrophys. 521, L33 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kochina.

Additional information

Original Russian Text © O.V. Kochina, D.S. Wiebe, 2014, published in Astronomicheskii Zhurnal, 2014, Vol. 91, No. 4, pp. 287–298.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochina, O.V., Wiebe, D.S. Different-sized dust grains and the chemical evolution of protostellar objects. Astron. Rep. 58, 228–239 (2014). https://doi.org/10.1134/S1063772914040064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772914040064

Keywords

Navigation