Skip to main content
Log in

Supermassive black holes and central star clusters: Connection with the host galaxy kinematics and color

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The relationship between the masses of the central, supermassive black holes (M bh) and of the nuclear star clusters (M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar populationM *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. ThemassM nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher massesM bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6–0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106−107 M (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Shankar, New Astron. Rev. 53, 57 (2009).

    Article  ADS  Google Scholar 

  2. E. H. Wehner and W. E. Harris, Astrophys. J. Lett. 644, L17 (2006).

    Article  ADS  Google Scholar 

  3. A. Seth, M. Agueros, D. Lee, and A. Basu-Zych, Astrophys. J. 678, 116 (2008).

    Article  ADS  Google Scholar 

  4. J. Rossa, R. P. van der Marel, T. Böker, et al., Astron. J. 132, 1074 (2006).

    Article  ADS  Google Scholar 

  5. A.W. Graham and R. L. Spitler, Mon. Not. R. Astron. Soc. 307, 2148 (2009).

    Article  ADS  Google Scholar 

  6. N. Neumayer and C. J. Walcher, Adv. Astron. 2012, 709038 (2012).

    ADS  Google Scholar 

  7. A. W. Graham, C. A. Onken, E. Athasnassoula, and F. Combes, Mon. Not. R. Astron. Soc. 412, 2211 (2011).

    Article  ADS  Google Scholar 

  8. J. Kormendy, R. Bender, and M. E. Cornell, Nature 469, 374 (2011).

    Article  ADS  Google Scholar 

  9. P. Erwin and D. A. Gadotti, Adv. Aston. 2012, 1 (2012).

    Article  Google Scholar 

  10. L. Ferrarese, P. Cote, E. Dalla Bonta, et al., Astrophys. J. Lett. 644, L21 (2006).

    Article  ADS  Google Scholar 

  11. A. V. Zasov, A. M. Cherepashchuk, and I. Yu. Katkov, Astron. Rep. 55, 595 (2011).

    Article  ADS  Google Scholar 

  12. N. Scott and A. W. Graham, Astrophys. J. 763, 76 (2013).

    Article  ADS  Google Scholar 

  13. V. L Afanasiev, Sov. Phys. Usp. 29, 980 (1986).

    Article  ADS  Google Scholar 

  14. A. V. Zasov, A. M. Cherepashchuk, and L. N. Petrochenko, Astron. Rep. 49, 362 (2005).

    Article  ADS  Google Scholar 

  15. A. S. Ilyin, K. P. Zybin, and A. V. Gurevich, J. Exp. Theor. Phys. 98, 1 (2004); arXiv:astro-ph/0306490 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Volonteri, F. Haardt, and P. Madau, Astrophys. J. 582, 559 (2003).

    Article  ADS  Google Scholar 

  17. M. Volonteri, N. Priyamada, and K. Gultekin, Astrophys. J. 737, 50 (2011)

    Article  ADS  Google Scholar 

  18. C. M. Booth and J. Schaye, Mon. Not. R. Astron. Soc. 405, L1 (2010).

    Article  ADS  Google Scholar 

  19. E. Barrause, Mon. Not. R. Astron. Soc. 423, 2533 (2012).

    Article  ADS  Google Scholar 

  20. T. Di Matteo, R. A.C. Croft, V. Springel, and L. Hernquist, Astrophys. J. 593, 56 (2003).

    Article  ADS  Google Scholar 

  21. L. Ferrarese, Astrophys. J. 576, 901 (2002).

    Google Scholar 

  22. A. Dutton, C. Convoy, F. C. van den Bosch, et al., Mon. Not. R. Astron. Soc. 407, 2 (2010).

    Article  ADS  Google Scholar 

  23. R. Reyes, R. Mandelbaum, J. E. Gunn, et al., Mon. Not. R. Astron. Soc. 425, 2610 (2012).

    Article  ADS  Google Scholar 

  24. M. Baes, P. Buyle, G. K. T. Hau, and H. Dejonghe, Mon. Not. R. Astron. Soc. 341, L44 (2003).

    Article  ADS  Google Scholar 

  25. A. Beifiori, S. Courteau, E. Corsini, and Y. Zhu, Mon. Not. R. Astron. Soc. 419, 2497 (2012).

    Article  ADS  Google Scholar 

  26. A. W. Graham, Publ. Astron. Soc. Austral. 25, 167 (2008).

    ADS  Google Scholar 

  27. A. W. Graham, Mon. Not. R. Astron. Soc. 422, 1586 (2012).

    Article  ADS  Google Scholar 

  28. A. M. Cherepashchuk, V. L. Afanasiev, A. V. Zasov, and I. Yu. Katkov, Astron. Rep. 54, 578 (2010).

    Article  ADS  Google Scholar 

  29. T. Böker, R. P. van der Marel, and W. D. Vacca, Astron. J. 118, 831 (1999).

    Article  ADS  Google Scholar 

  30. A. C. Seth, M. Capellari, M. Neumayer, et al., Astrophys. J. 714, 713 (2010).

    Article  ADS  Google Scholar 

  31. K. Gebhardt, T. R. Layer, J. Kormendy, et al., Astron. J. 122, 2469 (2001).

    Article  ADS  Google Scholar 

  32. S. C. E. van den Bosch, K. Gebhardt, K. Gultekin, et al., Nature 491, 729 (2012).

    Article  ADS  Google Scholar 

  33. Hyperleda. Database for physics of galaxies. http://leda.univ-lyon1.fr/

  34. Y. Sofue, T. Tutui, M. Honma, et al., Astrophys. J. 523, 136 (1999).

    Article  ADS  Google Scholar 

  35. K. Fathi, J. E. Beckman, N. Pinol-Ferrer, et al., Astrophys. J. 704, 1657 (2009).

    Article  ADS  Google Scholar 

  36. K. L. Jones, B. S. Koribalski, M. Elmouttie, et al., Mon. Not. R. Astron. Soc. 302, 649 (1999).

    Article  ADS  Google Scholar 

  37. Y. Sofue, Publ. Astron. Soc. Jpn. 64, 75 (2012).

    ADS  Google Scholar 

  38. L.M. Widrow, K. M. Perrett, and S. H. Suyu, Astrophys. J. 588, 311 (2003).

    Article  ADS  Google Scholar 

  39. S. A. Kassin, R. S. de Jong, and B. J. Weiner, Astrophys. J. 643, 804 (2006).

    Article  ADS  Google Scholar 

  40. J. Hlavacek-Lorrado, M. Marcelin, B. Epinat, et al., Mon. Not. R. Astron. Soc. 416, 509 (2011).

    ADS  Google Scholar 

  41. V. C. Rubin and W. K. Ford, Astrophys. J. 271, 556 (1983).

    Article  ADS  Google Scholar 

  42. I. Yu. Katkov, I. Chilingarian, O. Sil’chenko, et al., Baltic Astron. 20, 453 (2011).

    ADS  Google Scholar 

  43. E. Corbelli, Mon. Not. R. Astron. Soc. 342, 199 (2003).

    Article  ADS  Google Scholar 

  44. F. Simien and Ph. Prugniel, Astron. Astrophys. Suppl. Ser. 126, 519 (1997).

    Article  ADS  Google Scholar 

  45. D. A. Kornreich, M. P. Haynes, R. V. E. Lovelace, and L. van Zee, Astron. J. 120, 139 (2000).

    Article  ADS  Google Scholar 

  46. E. Emsellem, K. Fathi, H. Wozniak, et al., Mon. Not. R. Astron. Soc. 365, 367 (2006).

    Article  ADS  Google Scholar 

  47. P. A. B. Linblad and H. Kristen, Astron. Astrophys. 313, 733 (2006).

    ADS  Google Scholar 

  48. V. C. Rubin, W. K. Ford, N. Thonnard, and D. Burstein, Astrophys. J. 261, 439 (1982).

    Article  ADS  Google Scholar 

  49. A. Omar and K. S. Dwarakanath, J. Astrophys. Astron. 26, 1 (2005).

    Article  ADS  Google Scholar 

  50. G. R. Meurer, L. Staveley-Smith, and N. E. B. Killeen, Mon. Not. R. Astron. Soc. 300, 705 (1998).

    Article  ADS  Google Scholar 

  51. M. Spano, M. Marcelin, P. Amram, et al., Mon. Not. R. Astron. Soc. 383, 297 (2008).

    Article  ADS  Google Scholar 

  52. H.-W. Rix, C. M. Carollo, and K. Freeman, Astrophys. J. Lett. 513, L25 (1999).

    Article  ADS  Google Scholar 

  53. A.M. Fridman, V. L. Afanasiev, S. N. Dodonov, et al., Astron. Astrophys. 430, 67 (2005).

    Article  ADS  Google Scholar 

  54. M. A. Norris, R. M. Sharples, and H. Kuntschner, Mon. Not. R. Astron. Soc. 367, 815 (2006).

    Article  ADS  Google Scholar 

  55. C. C. Mundell, A. Pedlar, D. J. Axon, et al., Mon. Not. R. Astron. Soc. 277, 641 (1995).

    ADS  Google Scholar 

  56. S. Haan, E. Schinnerer, C. G. Mundell, et al., Astron. J. 135, 232 (2008).

    Article  ADS  Google Scholar 

  57. D. Fisher, Astron. J. 113, 950 (1997).

    Article  ADS  Google Scholar 

  58. R. Morganti, P. T. de Zeeuw, and T. A. Oosterloo, Mon. Not. R. Astron. Soc. 371, 157 (2006).

    Article  ADS  Google Scholar 

  59. I. Marquez, J. Masegosa, M. Moles, et al., Astron. Astrophys. 393, 389 (2002).

    Article  ADS  Google Scholar 

  60. C. Scorza and R. Bender, Astron. Astrophys. 293, 20 (1995).

    ADS  Google Scholar 

  61. N. Caon, D. Macchetto, and M. Pastoriza, Astrophys. J. Suppl. Ser. 127, 39 (2000).

    Article  ADS  Google Scholar 

  62. W. J. de Blok, F. Walter, E. Brinks, et al., Astron. J. 136, 2648 (2008).

    Article  ADS  Google Scholar 

  63. W. D. Pence, K. Taylor, and K. C. Freeman, Astrophys. J. 326, 564 (1988).

    Article  ADS  Google Scholar 

  64. M.-H. Rhee and T. S. van Albada, Astron. Astrophys. Suppl. Ser. 115, 407 (1996).

    ADS  Google Scholar 

  65. M. A. W. Verheijen and R. Sancisi, Astron. Astrophys. 370, 765 (2001).

    Article  ADS  Google Scholar 

  66. V. Rubin, Astron. J. 118, 23 (1999).

    Article  Google Scholar 

  67. R. P. Olling, Astron. J. 112, 457 (1996).

    Article  ADS  Google Scholar 

  68. V. C. Rubin, A. H. Waterman, and J. D. P. Kenney, Astron. J. 118, 236 (1999).

    Article  ADS  Google Scholar 

  69. J. Pinkney, K. Gebhardt, R. Bender, et al., Astrophys. J. 596, 903 (2003).

    Article  ADS  Google Scholar 

  70. O. Daigle, C. Carignan, P. Amram, et al., Mon. Not. R. Astron. Soc. 367, 469 (2006).

    Article  ADS  Google Scholar 

  71. R. A. Swaters, R. Sancisi, T. S. van Albada, and J. M. van der Hulst, Astron. Astrophys. 493, 871 (2009).

    Article  ADS  Google Scholar 

  72. C. Struve, T. A. Oosterloo, R. Morganti, and L. Saripalli, Astron. Astrophys. 515, A67 (2010).

    Article  ADS  Google Scholar 

  73. D. A. Korneich, M. P. Haynes, K. P. Jore, and R. V. E. Lovelace, Astron. J. 121, 1358 (2001).

    Article  ADS  Google Scholar 

  74. B. Catinella, M. P. Haynes, and R. Giovanelli, Astron. J. 130, 1037 (2005).

    Article  ADS  Google Scholar 

  75. N. Neumayer, C. J. Walcher, D. Andersen, et al., Mon. Not. R. Astron. Soc. 413, 1875 (2011).

    Article  ADS  Google Scholar 

  76. B. Epinat, P. Amram, and M. Marcelin, Mon. Not. R. Astron. Soc. 390, 466 (2008).

    ADS  Google Scholar 

  77. I. Dicaire, C. Carignan, P. Amram, et al., Mon. Not. R. Astron. Soc. 385, 553 (2008).

    Article  ADS  Google Scholar 

  78. F. Simien and Ph. Prugniel, Astron. Astrophys. 384, 371 (2002).

    Article  ADS  Google Scholar 

  79. A. V. Zasov and A. V. Khoperskov, Astron. Lett. 29, 437 (2003).

    Article  ADS  Google Scholar 

  80. T. Into and L. Portinari, Mon. Not. R. Astron. Soc. 430, 2715 (2012).

    Article  ADS  Google Scholar 

  81. N. J. McConnell, Chung-Pei Ma, K. Gebhardt, et al., Nature 480, 215 (2011).

    Article  ADS  Google Scholar 

  82. I. Strateva, V. Ivezic, G. R. Knapp, et al., Astron. J. 122, 1861 (2001).

    Article  ADS  Google Scholar 

  83. I. Baldry, K. Glazebrook, J. Brinkmann, et al., Astrophys. J. 600, 681 (2004).

    Article  ADS  Google Scholar 

  84. G. B. Brammer, K. E. Whitake, P. G. van Dokkum, et al., Astrophys. J. Lett. 706, L173 (2009).

    Article  ADS  Google Scholar 

  85. M. L. Balogh, I. K. Baldry, R. Nichol, et al., Astrophys. J. Lett. 615, L101 (2004).

    Article  ADS  Google Scholar 

  86. T. S. Gonsalves, D. C. Martin, D. Christopher, et al., Astrophys. J. 759, 67 (2012).

    Article  ADS  Google Scholar 

  87. A. J. Mendez, A. L. Coil, J. Lotz, et al., Astrophys. J. 736, 110 (2011).

    Article  ADS  Google Scholar 

  88. J. M. Gabor, R. Dave, B. D. Oppenheimer, and K. Finlator, Mon. Not. R. Astron. Soc. 407, 749 (2010).

    Article  ADS  Google Scholar 

  89. T. Di Matteo, V. Springel, and L. Hernquist, Nature 433, 604 (2005).

    Article  ADS  Google Scholar 

  90. K. Zubovas and F. King, Astrophys. J. Lett. 745, L34 (2012).

    Article  ADS  Google Scholar 

  91. A. Dekel and Y. Birnboim, Mon. Not. R. Astron. Soc. 368, 2 (2006).

    Article  ADS  Google Scholar 

  92. R. Valiante, R. Schneider, R. Maiolino, et al., Mon. Not. R. Astron. Soc. 427, L60 (2012).

    ADS  Google Scholar 

  93. R. Maiolino, S. Gallerani, R. Neri, et al., Mon. Not. R. Astron. Soc. 425, L66 (2012).

    Article  ADS  Google Scholar 

  94. M. Cano-Diaz, R. Maiolino, A. Marconi et al., Astron. Astrophys. 537, L8 (2012).

    Article  ADS  Google Scholar 

  95. S. A. Khoperskov, B. M. Shustov, and A. V. Khoperskov, Astron. Rep. 56, 664 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zasov.

Additional information

Original Russian Text © A.V. Zasov, A.M. Cherepashchuk, 2013, published in Astronomicheskii Zhurnal, 2013, Vol. 90, No. 11, pp. 871–884.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zasov, A.V., Cherepashchuk, A.M. Supermassive black holes and central star clusters: Connection with the host galaxy kinematics and color. Astron. Rep. 57, 797–810 (2013). https://doi.org/10.1134/S1063772913110085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772913110085

Keywords

Navigation