Skip to main content
Log in

Modeling of the formation of complex molecules in protostellar objects

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The results of molecular composition modeling are presented for the well studied low-mass star-forming region TMC-1 and the massive star-forming region DR21(OH), which is poorly studied from a chemical point of view. The column densities of dozens of molecules, ranging from simple diatomic to complex organic molecules, are reproduced to within an order of magnitude using a one-dimensional model for the physical and chemical structure of these regions. The chemical ages of the regions are approximately 105 years in both cases. The main desorption mechanisms that are usually included in chemical models (photodesorption, thermal desorption, and cosmic-ray-induced desorption) do not provide sufficient gasphase abundances of molecules that are synthesized in surface reactions; however, this shortcoming can be removed by introducing small amount of reactive desorption into the model. It is possible to reproduce the properties of the TMC-1 chemical composition in a standard model, without requiring additional assumptions about an anomalous C/O ratio or the recent accretion of matter enriched with atomic carbon, as has been proposed by some researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Berginand W. D. Langer, Astrophys. J. 486, 316 (1997).

    Article  ADS  Google Scholar 

  2. E. Herbst and E. F. van Dishoeck, Ann. Rev. Astron. Astrophys. 47, 427 (2009).

    Article  ADS  Google Scholar 

  3. R. Garrod and E. Herbst, Astron. Astrophys. 457, 927 (2006).

    Article  ADS  Google Scholar 

  4. R. T. Garrod, S. L. Widicus Weaver, and E. Herbst, Astrophys. J. 682, 283 (2008).

    Article  ADS  Google Scholar 

  5. A. I. Vasyunin and E. Herbst, Astrophys. J. 762, id. 86 (2013).

  6. D. S. Wiebe, V. I. Shematovich, and B. M. Shustov, Astron. Rep. 40, 639 (1996).

    ADS  Google Scholar 

  7. V. I. Shematovich, B. M. Shustov, and D. S. Wiebe, Mon. Not. R. Astron. Soc. 292, 601 (1997).

    Article  ADS  Google Scholar 

  8. V. I. Shematovich, D. S. Wiebe, and B. M. Shustov, Astron. Rep. 43, 645 (1999).

    ADS  Google Scholar 

  9. Ya. Pavlyuchenkov, D. Wiebe, R. Launhardt, and Th. Henning, Astrophys. J. 645, 1212 (2006).

    Article  ADS  Google Scholar 

  10. Ya. N. Pavlyuchenkov, D. S. Wiebe, A. M. Fateeva, and T. S. Vasyunina, Astron. Rep. 55, 1 (2011).

    Article  ADS  Google Scholar 

  11. J. Woodall, M. Agundez, A. J. Markwick-Kemper, and T. J. Millar, Astron. Astrophys. 466, 1197 (2007).

    Article  ADS  Google Scholar 

  12. T. I. Hasegawa, E. Herbst, and C. M. Leung, Astrophys. J. Suppl. Ser. 82, 167 (1992).

    Article  ADS  Google Scholar 

  13. T. I. Hasegawa and E. Herbst, Mon. Not. R. Astron. Soc. 261, 83 (1993).

    ADS  Google Scholar 

  14. R. T. Garrod, V. Wakelam, and E. Herbst, Astron. Astrophys. 467, 1103 (2007).

    Article  ADS  Google Scholar 

  15. A. I. Vasyunin, A. M. Sobolev, D. S. Wiebe, and D. A. Semenov, Astron. Lett. 30, 566 (2004).

    Article  ADS  Google Scholar 

  16. A. I. Vasyunin, D. Semenov, Th. Henning, et al., Astrophys. J. 672, 629 (2008).

    Article  ADS  Google Scholar 

  17. J. H. Elias, Astrophys. J. 224, 857 (1978).

    Article  ADS  Google Scholar 

  18. S. Schnee and A. Goodman, Astrophys. J. 624, 254 (2005).

    Article  ADS  Google Scholar 

  19. N. Kaifu, M. Ohishi, and K. Kawaguchi, Publ. Astron. Soc. Jpn. 56, 69 (2004).

    ADS  Google Scholar 

  20. E. Churchwell, G. Winnewisser, and C.M. Walmsley, Astron. Astrophys. 67, 139 (1978).

    ADS  Google Scholar 

  21. L. T. Little, P. W. Riley, and G. H. MacDonald, Mon. Not. R. Astron. Soc. 183, 805 (1978).

    ADS  Google Scholar 

  22. A. Wootten, E. P. Bozyan, and D. B. Garrett, Astrophys. J. 239, 844 (1980).

    Article  ADS  Google Scholar 

  23. R. L. Snell, W. D. Langer, and M. A. Frerking, Astrophys. J. 255, 149 (1982).

    Article  ADS  Google Scholar 

  24. Y. Hirahara, H. Suzuki, and S. Yamamoto, Astrophys. J. 394, 539 (1992).

    Article  ADS  Google Scholar 

  25. L. T. Little, G. H. MacDonald, and P. W. Riley, Mon. Not. R. Astron. Soc. 189, 539 (1979).

    ADS  Google Scholar 

  26. M. Guelin, W. D. Langer, and R. W. Wilson, Astron. Astrophys. 107, 107 (1982).

    ADS  Google Scholar 

  27. D. McElroy, C. Walsh, A. J. Markwick, et al., Astron. Astrophys. 550, A36 (2013).

    Article  ADS  Google Scholar 

  28. D. Semenov, D. Wiebe, and Th. Henning, Astron. Astrophys. 417, 93 (2004).

    Article  ADS  Google Scholar 

  29. M. Ohishi, W. M. Irvine, and N. Kaifu, Proc. IAU Symp. 150, 171 (1992).

    ADS  Google Scholar 

  30. W. D. Langer, T. Velusamy, T. B. H. Kuiper, et al., Astrophys. J. 453, 293 (1995).

    Article  ADS  Google Scholar 

  31. M. Tafalla, P. C. Myers, P. Caselli, et al., Astrophys. J. 569, 815 (2002).

    Article  ADS  Google Scholar 

  32. P. F. Goldsmith, Astrophys. J. 557, 736 (2001).

    Article  ADS  Google Scholar 

  33. B. T. Draine, Astrophys. J. Suppl. Ser. 36, 595 (1978).

    Article  ADS  Google Scholar 

  34. H. Roberts and E. Herbst, Astron. Astrophys. 395, 233 (2002).

    Article  ADS  Google Scholar 

  35. S. Schnee, P. Caselli, A. Goodman, et al., Astrophys. J. 671, 1839 (2007).

    Article  ADS  Google Scholar 

  36. K. L. J. Rygl, A. Brunthaler, A. Sanna, et al., Astron. Astrophys. 539, id. A79 (2012).

    Article  ADS  Google Scholar 

  37. E. D. Araya, S. Kurtz, and P. Hofner, Astrophys. J. 698, 1321 (2009).

    Article  ADS  Google Scholar 

  38. K. J. Richardson, G. J. White, and J. P. Phillips, Mon. Not. R. Astron. Soc. 219, 167 (1986).

    ADS  Google Scholar 

  39. K. J. Richardson, G. Sandell, and K. Krisciunas, Astron. Astrophys. 224, 199 (1989).

    ADS  Google Scholar 

  40. J. G. Mangum, A. Wootten, and L. G. Mundy, Astrophys. J. 378, 576 (1991).

    Article  ADS  Google Scholar 

  41. J. P. Vallé and J. D. Fiege,, Astrophys. J. 636, 3332 (2006).

    Article  ADS  Google Scholar 

  42. K. J. Richardson, G. Sandell, and C. T. Cunningham, Astron. Astrophys. 286, 555 (1994).

    ADS  Google Scholar 

  43. H. Jakob, C. Kramer, R. Simon, et al., Astron. Astrophys. 461, 999 (2007).

    Article  ADS  Google Scholar 

  44. T. Hezareh, M. Houde, and C. McCoey, Astrophys. J. 684, 1221 (2008).

    Article  ADS  Google Scholar 

  45. N. Schneider, T. Csengeri, and S. Bontemps, Astron. Astrophys. 520, id.A49 (2010).

    Article  ADS  Google Scholar 

  46. D. P. Woody, S. L. Scott, N. Z. Scoville, et al., Astrophys. J. Lett. 337, L41 (1989).

    Article  ADS  Google Scholar 

  47. R. P. Norris, R. S. Booth, and P. J. Diamond, Mon. Not. R. Astron. Soc. 201, 191 (1982).

    ADS  Google Scholar 

  48. R. Genzel and D. Downes, Astron.Astrophys. 30, 145 (1977).

    ADS  Google Scholar 

  49. W. Batrla and K. M. Menten, Astrophys. J. Lett. 329, L117 (1988).

    Article  ADS  Google Scholar 

  50. S. V. Kalenskii and L. E. B. Johansson, Astron. Rep. 54, 295 (2010).

    Article  ADS  Google Scholar 

  51. R. Peng, H. Yoshida, R. A. Chamberlin, et al., Astrophys. J. 723, 218 (2010).

    Article  ADS  Google Scholar 

  52. J.G. Mangum, A. Wootten, and L. G. Mundy, Astrophys. J. 388, 467 (1992).

    Article  ADS  Google Scholar 

  53. B. Mookerjea, G. E. Hassel, M. Gerin, et al., Astron. Astrophys. 546, A75 (2012).

    Article  ADS  Google Scholar 

  54. S. V. Kalenskii and L. E. B. Johansson, Astron. Rep. 54, 1084 (2010).

    Article  ADS  Google Scholar 

  55. L. A. Zapata, L. Loinard, Y.-N. Su, et al., Astrophys. J. 744, 86 (2012).

    Article  ADS  Google Scholar 

  56. C. J. Chandler, W. K. Gear, and R. Chini, Mon. Not. R. Astron. Soc. 260, 337 (1993).

    ADS  Google Scholar 

  57. F. Motte, S. Bontemps, P. Schilke, et al., Astron. Astrophys. 476, 1243 (2007).

    Article  ADS  Google Scholar 

  58. E. D. Araya, S. Kurtz, P. Hofner, and H. Linz, Astrophys. J. 698, 1321 (2009).

    Article  ADS  Google Scholar 

  59. C. A. Olano, C. M. Walmsley, and T. L. Wilson, Astron. Astrophys. 196, 194 (1988).

    ADS  Google Scholar 

  60. A. I. Vasyunin and E. Herbst, Astrophys. J. 769, id.34 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kochina.

Additional information

Original Russian Text © O.V. Kochina, D.S. Wiebe, S.V. Kalenskii, A.I. Vasyunin, 2013, published in Astronomicheskii Zhurnal, 2013, Vol. 90, No. 11, pp. 892–906.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochina, O.V., Wiebe, D.S., Kalenskii, S.V. et al. Modeling of the formation of complex molecules in protostellar objects. Astron. Rep. 57, 818–832 (2013). https://doi.org/10.1134/S1063772913110036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772913110036

Keywords

Navigation