Skip to main content
Log in

The interplanetary magnetic field: Radial and latitudinal dependences

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Results of the analysis of spacecraft measurements at 1–5.4 AU are presented within the scope of the large-scale interplanetary magnetic field (IMF) structure investigation. The work is focused on revealing of the radial IMF component (B r ) variations with heliocentric distance and latitude as seen by Ulysses. It was found out that |B r | decreases as ∼r −5/3 in the ecliptic plane vicinity (±10° of latitude), which is consistent with the previous results obtained on the basis of the analysis of in-ecliptic measurements from five spacecraft. The difference between the experimentally found (r −5/3) and commonly used (r −2) radial dependence of B r may lead to mistakes in the IMF recalculations from point to point in the heliosphere. This can be one of the main sources of the “magnetic flux excess” effect, which is exceeding of the distantly measured magnetic flux over the values obtained through the measurements at the Earth orbit. It is shown that the radial IMF component can be considered as independent of heliolatitude in a rough approximation only. More detailed analysis demonstrates an expressed |B r | (as well as the IMF strength) increase in the latitudinal vicinity of ±30° relative to the ecliptic plane. Also, a slight increase of the both parameters is observed in the polar solar wind. The comparison of the B r distributions confirms that, at the same radial distance, B r values are higher at low than at high latitudes. The analysis of the latitudinal and radial dependences of the B r distribution’s bimodality is performed. The B r bimodality is more expressed at high than in the low-latitude solar wind, and it is observed at greater radial distances at high latitudes. The investigation has not revealed any dependence between B r and the solar wind speed V. The two-peak distribution of the solar wind speed as measured by Ulysses is a consequence of a strong latitudinal and solar cycle dependence of V. It is shown that the solar wind speed in high latitudes (above ±40°) anti-correlates with a solar activity: V is maximum during solar-cycle minima and minimum at the maximum of solar activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Rosenberg, J. Geophys. Res.: Space Phys. 75, 5310 (1970).

    Article  ADS  Google Scholar 

  2. A. V. Belov, V. N. Obridko, and B. D. Shelting, Geomagn. Aeron. 46, 430 (2006).

    Article  ADS  Google Scholar 

  3. E. J. Smith, J. Geophys. Res.: Space Phys. 118, 58 (2013); doi:10.1002/jgra.50098.

    Article  ADS  Google Scholar 

  4. M. M. Echim, J. Lemaire, and O. Lie-Svendsen, Surv. Geophys. 32, 1 (2011).

    Article  ADS  Google Scholar 

  5. V. N. Obridko, A. F. Kharshiladze, and B. D. Shelting, Astron. Astrophys. Trans. 11, 65 (1996).

    Article  ADS  Google Scholar 

  6. P. Riley, Astrophys. J. Lett. 667, L97 (2007); doi:10.1086/522001.

    Article  ADS  Google Scholar 

  7. M. J. Owens, H. E. Spence, S. McGregor, et al., Space Weather 6, S08001 (2008); doi:10.1029/2007SW000380.

    Article  ADS  Google Scholar 

  8. M. J. Owens, C. N. Arge, N. U. Crooker, et al., J. Geophys. Res. 113, A12103 (2008); doi:10.1029/2008JA013677.

    Article  ADS  Google Scholar 

  9. M. Lockwood, M. Owens, and A. P. Rouillard, J. Geophys. Res. 114, A11104 (2009); doi:10.1029/2009JA014450.

    Article  ADS  Google Scholar 

  10. E. J. Smith, J. Geophys. Res.: Space Phys. 116, A12 (2011); doi:10.1029/2011JA016521.

    Google Scholar 

  11. M. Lockwood and M. Owens, J. Geoph. Res.: Space Phys. 118, 5 (2013); doi:10.1002/jgra.50223 (2013).

    Article  Google Scholar 

  12. M. Lockwood and M. Owens, Astrophys. J. 701, 964 (2009); doi:10.1088/0004-637X/701/2/964.

    Article  ADS  Google Scholar 

  13. O. Khabarova and V. Obridko, Astrophys. J. 761, 82 (2012); doi:10.1088/0004-637X/761/2/82.

    Article  ADS  Google Scholar 

  14. P. Riley, J. A. Linker, and Z. Mikic, J. Geophys. Res. 107, A7 (2002); doi:10.1029/2001ja000299.

    Article  Google Scholar 

  15. N. A. Schwadron and D. J. McComas, Geophys. Res. Lett. 32, L03112 (2005); doi:10.1029/2004GL021579.

    Article  ADS  Google Scholar 

  16. K. Mursula and I. I. Virtanen, J.Geophys.Res. (2013, in press); doi:10.1029/2011JA017197.

    Google Scholar 

  17. C. M. Ho, B. T. Tsurutani, J. K. Arballo, et al., Geophys. Res. Lett. 24, 915 (1997); doi:10.1029/97GL00806.

    Article  ADS  Google Scholar 

  18. M. Neugebauer, R. J. Forsyth, A. B. Galvin, et al., J. Geophys. Res. 103, 14587 (1998); doi:10.1029/98JA00798.

    Article  ADS  Google Scholar 

  19. X. P. Zhao, J. T. Hoeksema, Y. Liu, and P. H. Scherrer, J. Geophys. Res. 111, A10108 (2006); doi:10.1029/2005JA011576.

    Article  Google Scholar 

  20. M. Lockwood, R. B. Forsyth, A. Balogh, and D. J. McComas, Ann. Geophys. 22, 1395 (2004).

    Article  ADS  Google Scholar 

  21. E. J. Smith, A. Balogh, R. F. Forsyth, et al., Adv. Space Res. 26, 823 (2000); doi:10.1016/S0273-1177(00)00014-4.

    Article  ADS  Google Scholar 

  22. A. Balogh, E. J. Smith, B. T. Tsurutani, et al., Science 268, 1007 (1995); doi:10.1126/science.268.5213.1007.

    Article  ADS  Google Scholar 

  23. G. Erdős and A. Balogh, Astrophys. J. 753, 130 (2012); doi:10.1088/0004-637X/753/2/130.

    Article  ADS  Google Scholar 

  24. K. M. Kuzanyan and D. D. Sokoloff, Geophys. Astrophys. Fluid Dyn. 81, 113 (1995); doi:10.1080/03091929508229073.

    Article  MathSciNet  ADS  Google Scholar 

  25. A. B. Asgarov and V. N. Obridko, Sun Geosphere 2, 29 (2007).

    ADS  Google Scholar 

  26. O. Khabarova and V. Obridko, Preprint Inst. Terrestr. Magn. (IZMIRAN, Troitsk, Moscow, 2011). http://arxiv.org/ftp/arxiv/papers/1102/1102.1176.pdf

    Google Scholar 

  27. V. N. Obridko, E. V. Ivanov, A. Özgüç, et al., Solar Phys. 281, 779 (2013).

    Article  ADS  Google Scholar 

  28. Yu. I. Ermolaev, N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Ermolaev, Kosmich. Issled. 47, 1 (2009).

    Google Scholar 

  29. I. S. Veselovskii and A. T. Lukashenko, Solar Syst. Res. 46, 149 (2012).

    Article  ADS  Google Scholar 

  30. A. V. Usmanov, W. H. Matthaeus, B. A. Breech, and M. L. Goldstein, Astrophys. J. 727, 84 (2011); doi:10.1088/0004-637X/727/2/84.

    Article  ADS  Google Scholar 

  31. D. F. Webb, T. A. Howard, C. D. Fry, et al., Solar Phys. 256, 239 (2009); doi: 10.1007/s11307-009-9351-8.

    Article  ADS  Google Scholar 

  32. A. V. Usmanov, M. L. Goldstein, and W. H. Matthaeus, Astrophys. J. 754, 40 (2013); doi:10.1088/0004-637X/754/1/40.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Khabarova.

Additional information

Original Russian Text © O.V. Khabarova, 2013, published in Astronomicheskii Zhurnal, 2013, Vol. 90, No. 11, pp. 919–935.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khabarova, O.V. The interplanetary magnetic field: Radial and latitudinal dependences. Astron. Rep. 57, 844–859 (2013). https://doi.org/10.1134/S1063772913110024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772913110024

Keywords

Navigation