Skip to main content
Log in

Types of gaseous envelopes of “hot Jupiter” exoplanets

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

As a rule, the orbital velocities of “hot Jupiters,” i.e., exoplanets with masses comparable to the mass of Jupiter and orbital semi-major axes less than 0.1 AU, are supersonic relative to the stellar wind, resulting in the formation of a bow shock. Gas-dynamical modeling shows that the gaseous envelopes around hot Jupiters can belong to two classes, depending on the position of the collision point. if the collision point is inside the Roche lobe of the planet, the envelopes have the almost spherical shapes of classical atmospheres, slightly distorted by the influence of the star and interactions with the stellar-wind gas; if the collision point is located outside the Roche lobe, outflows from the vicinity of the Lagrangian points L1 and L2 arise, and the envelope becomes substantially asymmetrical. The latter class of objects can also be divided into two types. If the dynamical pressure of the stellar-wind gas is high enough to stop the most powerful outflow from the vicinity of the inner Lagrangian point L1, a closed quasi-spherical envelope with a complex shape forms in the system. If the wind is unable to stop the outflow from L1, an open aspherical envelope forms. The possible existence of atmospheres of these three types is confirmed by 3D numerical modeling. Using the typical hot Jupiter HD 209458b as an example, it is shown that all three types of atmospheres could exist within the range of estimated parameters of this planet. Since different types of envelopes have different observational manifestations, determining the type of envelope in HD 209458b could apply additional constrains on the parameters of this exoplanet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).

    Article  ADS  Google Scholar 

  2. M. Mayor and D. Queloz, Nature 378, 355 (1995).

    Article  ADS  Google Scholar 

  3. D. Charbonneau, T. M. Brown, D. W. Latham, and M. Mayor, Astrophys. J. Lett. 529, L45 (2000).

    Article  ADS  Google Scholar 

  4. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, et al., Nature 422, 143 (2003).

    Article  ADS  Google Scholar 

  5. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, et al., Astrophys. J. Lett. 676, L57 (2008).

    Article  ADS  Google Scholar 

  6. L. Ben-Jaffel, Astrophys. J. Lett. 671, L61 (2007).

    Article  ADS  Google Scholar 

  7. A. Vidal-Madjar, J.-M. Désert, A. Lecavelier des Etangs, et al., Astrophys. J. Lett. 604, L69 (2004).

    Article  ADS  Google Scholar 

  8. L. Ben-Jaffel and S. Sona Hosseini, Astrophys. J. 709, 1284 (2010).

    Article  ADS  Google Scholar 

  9. J. L. Linsky, H. Yang, K. France, et al., Astrophys. J. 717, 1291 (2010).

    Article  ADS  Google Scholar 

  10. R. V. Yelle, Icarus 170, 167 (2004).

    Article  ADS  Google Scholar 

  11. A. García Muñoz, Planet. and Space Sci. 55, 1426 (2007).

    Article  ADS  Google Scholar 

  12. T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus (2013, in press); arXiv:1210.1536 [astro-ph] (2012).

    Google Scholar 

  13. H. Lammer, K. G. Kislyakova, M. Holmström, et al., Astrophys. Space Sci. 335, 9 (2011).

    Article  ADS  Google Scholar 

  14. A. Lecavelier Des Etangs, D. Ehrenreich, A. Vidal-Madjar, et al., Astron. Astrophys. 514, A72 (2010).

    Article  ADS  Google Scholar 

  15. L. Fossati, C. A. Haswell, C. S. Froning, et al., Astrophys. J. Lett. 714, L222 (2010).

    Article  ADS  Google Scholar 

  16. L. Fossati, S. Bagnulo, A. Elmasli, et al., Astrophys. J. 720, 872 (2010).

    Article  ADS  Google Scholar 

  17. D. Lai, C. Helling, and E. P. J. van den Heuvel, Astrophys. J. 721, 923 (2010).

    Article  ADS  Google Scholar 

  18. S.-L. Li, N. Miller, D. N. C. Lin, and J. J. Fortney, Nature 463, 1054 (2010).

    Article  ADS  Google Scholar 

  19. A. A. Vidotto, M. Jardine, and C. Helling, Astrophys. J. Lett. 722, L168 (2010).

    Article  ADS  Google Scholar 

  20. A. A. Vidotto, M. Jardine, and C. Helling, Mon. Not. R. Astron. Soc. 411, L46 (2011).

    Article  ADS  Google Scholar 

  21. A. A. Vidotto, M. Jardine, and C. Helling, Mon. Not. R. Astron. Soc. 414, 1573 (2011).

    Article  ADS  Google Scholar 

  22. D. Bisikalo, P. Kaygorodov, D. Ionov, et al., Astrophys. J. 764, 19 (2013).

    Article  ADS  Google Scholar 

  23. A. Lecavelier des Etangs, V. Bourrier, P. J. Wheatley, et al., Astron. Astrophys. 543, L4 (2012).

    Article  ADS  Google Scholar 

  24. T. T. Koskinen, R. V. Yelle, P. Lavvas, and N. K. Lewis, Astrophys. J. 723, 116 (2010).

    Article  ADS  Google Scholar 

  25. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

  26. V. B. Baranov and K. V. Krasnobaev, Hydrodynamical Theory of Cosmic Plasma (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  27. G. L. Withbroe, Astrophys. J. 325, 442 (1988).

    Article  ADS  Google Scholar 

  28. S. H. Lubow and F. H. Shu, Astrophys. J. 198, 383 (1975).

    Article  ADS  Google Scholar 

  29. A. A. Boyarchuk, D. V. Bisikalo, O. A. Kuznetsov, and V. M. Chechetkin, Mass Transfer in Close Binary Stars (Taylor and Francis, London, 2002).

    Google Scholar 

  30. D. V. Bisikalo, A. A. Boyarchuk, P. V. Kaigorodov, and O. A. Kuznetsov, Astron. Rep. 47, 809 (2003).

    Article  ADS  Google Scholar 

  31. J. I. Moses, C. Visscher, J. J. Fortney, et al., Astrophys. J. 737, 15 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Bisikalo.

Additional information

Original Russian Text © D.V. Bisikalo, P.V. Kaigorodov, D.E. Ionov, V.I. Shematovich, 2013, published in Astronomicheskii Zhurnal, 2013, Vol. 90, No. 10, pp. 779–790.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisikalo, D.V., Kaigorodov, P.V., Ionov, D.E. et al. Types of gaseous envelopes of “hot Jupiter” exoplanets. Astron. Rep. 57, 715–725 (2013). https://doi.org/10.1134/S1063772913100016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772913100016

Keywords

Navigation