Skip to main content
Log in

Orbital-period variations in the eclipsing binary Y Cam

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We have studied the time behavior of the orbital period and the primary’s pulsation period for the eclipsing binary system Y Cam, whose secondary fills its Roche lobe and whose primary is a δ Scuti star. The times of minima available for this eclipsing binary cover 120 years. δ Scuti pulsations of the primary have been observed over the last 50 years, with the period of these pulsational brightness variations remaining virtually unchanged during the entire observed time interval. The large-amplitude cyclic variations of the orbital period of Y Cam cannot be explained solely by the presence of a third body in the system. It is possible to explain the period variations of Y Cam with magnetic oscillations or a superposition of a stationary matter flow from the lower-mass to the higher-mass component together with magnetic oscillations, similar to the case of AB Cas. A good agreement with observations is provided by a model assuming a stationary matter flow from the secondary filling its Roche lobe to the primary, at the rate of 2.85 × 10−7 M /year, superposed with irregular period jumps that can be explained by instabilities in the matter flow. We have detected cyclic variations of the orbital period of Y Cam with an amplitude of 0.011d, which can be understood if the binary moves in a long-period orbit (with a period of 38.6 years) around a third body with mass M 3 s> 0.30M . These cyclic period variations of the eclipsing binary agree with the observed small period variations of the δ Scuti pulsations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Kreiner, Acta Astron. 21, 365 (1971).

    ADS  Google Scholar 

  2. J. M. Kreiner and J. Ziolkowski, Acta Astron. 28, 497 (1978).

    ADS  Google Scholar 

  3. S. O. Selam and O. Demircan, Turk. J. Phys. 23, 301 (1999).

    Google Scholar 

  4. D. I. Hoffman, T. E. Harrison, B. J. McNamara, et al., Astron. J. 132, 2260 (2006).

    Article  ADS  Google Scholar 

  5. P. Zasche, A. Liakos, M. Wolf, and P. Niarchos, New Astron. 13, 405 (2008).

    Article  ADS  Google Scholar 

  6. L. V. Mossakovskaya, Perem. Zvezdy 23, 179 (1993).

    ADS  Google Scholar 

  7. T. Borkovits and T. Hegedüs, Astron. Astrophys. Suppl. Ser. 120, 63 (1996).

    Article  ADS  Google Scholar 

  8. J. H. Applegate, Astrophys. J. 385, 621 (1992).

    Article  ADS  Google Scholar 

  9. Kh. F. Khaliullin and A. I. Khaliullina, Mon. Not. R. Astron. Soc. 419, 3393 (2012).

    Article  ADS  Google Scholar 

  10. W. Ceraski, Astron. Nachr. 162, 203 (1903).

    Article  ADS  Google Scholar 

  11. E. Rodriguez, J. M. Garcia, V. Costa, et al., Mon. Not. R. Astron. Soc. 408, 2149 (2010).

    Article  ADS  Google Scholar 

  12. S. Blazko, Astron. Nachr. 177, 119 (1908).

    Article  ADS  Google Scholar 

  13. R. S. Dugan, Contrib. Princeton Univ. Observ., No. 6, 1 (1924).

    Google Scholar 

  14. P. Broglia and F. Marin, Astron. Astrophys. 34, 89 (1974).

    ADS  Google Scholar 

  15. O. Struve, H. G. Horak, R. Canavaggia, et al., Astrophys. J. 111, 658 (1950).

    ADS  Google Scholar 

  16. M. Harwood, Ann. Harvard College Observ. 84, 37 (1933).

    ADS  Google Scholar 

  17. A. Szczepanowska, Acta Astron. Ser. B 2, 134 (1955).

    Google Scholar 

  18. M. Plavec, M. Smetanova, and Z. Pekný, Bull. Astron. Inst. Czechosl. 12, 117 (1961).

    ADS  Google Scholar 

  19. P. Broglia and P. Conconi, Astron. Astrophys. 138, 443 (1984).

    ADS  Google Scholar 

  20. T. Borkovits and T. Hegedüs, Publ. Observ. Astron. Belgrade, No. 49, 97 (1995).

    Google Scholar 

  21. A. I. Khaliullina and Kh. F. Khaliullin, Sov. Astron. 28, 228 (1984).

    ADS  Google Scholar 

  22. Kh. F. Khaliullin, Sov. Astron. 18, 229 (1974).

    ADS  Google Scholar 

  23. P. Broglia, Inform. Bull. Var. Stars, No. 823, 1 (1973).

    Google Scholar 

  24. S.-L. Kim, J. W. Lee, J.-H. Youn, et al., Astron. Astrophys. 391, 213 (2002).

    Article  ADS  Google Scholar 

  25. D. S. Hall, Space Sci. Rev. 50, 219 (1989).

    Article  ADS  Google Scholar 

  26. A. F. Lanza, M. Rodono and R. Rosner, Mon. Not. R. Astron. Soc. 296, 893 (1998).

    Article  ADS  Google Scholar 

  27. C. A. Watson and T. R. Marsh, Mon. Not. R. Astron. Soc. 405, 1867 (2010).

    ADS  Google Scholar 

  28. D. S. Hall and J. A. J. Whelam, Acta Astron. 29, 653 (1979).

    ADS  Google Scholar 

  29. U. S. Chaubey, Bull. Astron. Soc. India 21, 597 (1993).

    ADS  Google Scholar 

  30. S. Qian, Astron. J. 119, 3064 (2000).

    Article  ADS  Google Scholar 

  31. P. Biermann and D. S. Hall, Astron. Astrophys. 27, 249 (1973).

    ADS  Google Scholar 

  32. D. S. Hall, Acta Astron. 25, 1 (1975).

    ADS  MATH  Google Scholar 

  33. J. Zhang and S. Qain, in Ninth Pacific Rim Conference on Stellar Astrophysics, Ed. by S. Qian, K. Leung, L. Zhu, and S. Kwok, ASP Conf. Ser. 451, 67 (2011).

  34. H. Frieboes-Conde and T. J. Herczeg, Astron. Astrophys. Suppl. Ser. 12, 1 (1973).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Khaliullina.

Additional information

Original Russian Text © Kh.F. Khaliullin, A.I. Khaliullina, 2013, published in Astronomicheskii Zhurnal, 2013, Vol. 90, No. 7, pp. 565–575.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaliullin, K.F., Khaliullina, A.I. Orbital-period variations in the eclipsing binary Y Cam. Astron. Rep. 57, 517–526 (2013). https://doi.org/10.1134/S1063772913060024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772913060024

Keywords

Navigation