Skip to main content
Log in

Interaction of the dark-matter cusp with the baryonic component in disk galaxies

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The influence of the formation and evolution of a (disk) galaxy on the matter distribution in the dark-matter halo is considered. Calculations of the evolution of an isolated dark-matter halo were carried out with and without including a baryonic component. N-body simulations (for the dark-matter halo) and gas-dynamical numerical simulations (for the baryonic gas) were used for this analysis. Star formation, feedback, and heating and cooling of the interstellar medium were taken into account in the gas-dynamical calculations. The results of these numerical simulations with high spatial resolution indicate that 1) including the star formation resolves the so-called cusp problem (according to CDMcosmological models, the density distribution in the central regions of the dark-matter halo should have a distinct peak (cusp), which is not shown by observations); 2) the interaction of the dark matter with dynamical substructures of the stellar-gas galactic disk (spiralwaves, a bar) affects the shape of the dark-matter halo. In particular, the calculated dark-matter distribution in the plane of the disk is more symmetric when the baryonic component is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Steinmetz, Astrophys. Space Sci. 284, 325 (2003).

    Article  ADS  Google Scholar 

  2. H. Mo, F. van der Bosch, and S. White, Galaxy Formation and Evolution (Cambridge Univ. Press, Cambridge, 2010).

    Google Scholar 

  3. B. M. Shustov and A. A. Kabanov, in Physics of the Cosmos (Proceedings of the 41st Student Science Conference), Ed. by P. E. Zakharov et al. (Ural. Fed. Univ., Ekaterinburg, 2012), p. 200 [in Russian].

    Google Scholar 

  4. A.G.Doroshkevich,V. N. Lukash, and E.A. Mikheeva, Phys. Usp. 55, 3 (2012).

    Article  ADS  Google Scholar 

  5. A. A. Dutton, F. S. van den Bosch, A. Dekel, et al., Astrophys. J. 654, 27 (2007).

    Article  ADS  Google Scholar 

  6. A. V. Zasov and O. K. Sil’chenko, Phys. Usp. 53, 415 (2010).

    Article  ADS  Google Scholar 

  7. R. Roskar, V. P. Debattista, A. M. Rooks, et al., Mon. Not. R. Astron. Soc. 408, 783 (2010).

    Article  ADS  Google Scholar 

  8. F. Governato, B. Willman, L. Mayer, et al., Mon. Not. R. Astron. Soc. 374, 1479 (2007).

    Article  ADS  Google Scholar 

  9. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 463, 563 (1996).

    Article  ADS  Google Scholar 

  10. W. J. G. de Blok, F. Walter, E. Brinks, et al., Astron. J. 136, 2648 (2008).

    Article  ADS  Google Scholar 

  11. M. Spano, M. Marcelin, P. Amram, et al., Mon. Not. R. Astron. Soc. 383, 297 (2008).

    Article  ADS  Google Scholar 

  12. E. Mikheeva, A. Doroshkevich, and V. Lukash, Nuovo Cim. B 122, 1393 (2007).

    ADS  Google Scholar 

  13. M. V. Medvedev, J. Phys. A: Math. Theor. 43, 372 (2010).

    Article  Google Scholar 

  14. M. G. Abadi, J. F. Navarro, M. Fardal, et al., Mon. Not. R. Astron. Soc. 407, 435 (2010).

    Article  ADS  Google Scholar 

  15. A. Khoperskov, D. Bizyaev, N. Tyurina, and M. Butenko, Astron. Nachr. 331, 731 (2010).

    Article  ADS  Google Scholar 

  16. M. D. Weinberg and N. Katz, Astrophys. J. 580, 627 (2002).

    Article  ADS  Google Scholar 

  17. A. P. Cooper, S. Cole, C. S. Frenk, et al., Mon. Not. R. Astron. Soc. 406, 744 (2010).

    Article  ADS  Google Scholar 

  18. M. Kuhlen, J. Diemand, and P. Madau, Astrophys. J. 671, 1135 (2007).

    Article  ADS  Google Scholar 

  19. B. Allgood, R. A. Flores, J. R. Primack, et al., Mon. Not. R. Astron. Soc. 367, 1781 (2006).

    Article  ADS  Google Scholar 

  20. J. Dubinski and D. Chakrabarty, Astrophys. J. 703, 2068 (2009).

    Article  ADS  Google Scholar 

  21. P. Das, O. Gerhard, E. Churazov, et al., Mon. Not. R. Astron. Soc. 409, 1362 (2010).

    Article  ADS  Google Scholar 

  22. B. C. Whitmore, D. B. McElroy, and F. Schweizer, Astrophys. J. 314, 439 (1987).

    Article  ADS  Google Scholar 

  23. W. R. Brown, M. J. Geller, and S. J. Kenyon, Astrophys. J. 690, 1639 (2009); e-Print arXiv:0808.2469 [astro-ph] (2008).

    Article  ADS  Google Scholar 

  24. V. Belokurov, N. W. Evans, E. F. Bell, et al., Astrophys. J. 657, L89 (2007).

    Article  ADS  Google Scholar 

  25. A. Helmi, Mon.Not. R. Astron. Soc. 351, 643 (2004).

    Article  ADS  Google Scholar 

  26. B. van Leer, J. Comp. Phys. 32, 101 (1979).

    Article  ADS  Google Scholar 

  27. K. Wada and C. A. Norman, Astrophys. J. 547, 172 (2001).

    Article  ADS  Google Scholar 

  28. M. A. Eremin, A. V. Khoperskov, and S. A. Khoperskov, Izv. Volgogr. Gos. Tekh. Univ. 13, 24 (2010).

    Google Scholar 

  29. A. V. Khoperskov, M. A. Eremin, S. A. Khoperskov, et al., Astron. Rep. 56, 16 (2012).

    Article  ADS  Google Scholar 

  30. A. V. Khoperskov, A. V. Zasov, and N. V. Tyurina, Astron. Rep. 47, 357 (2003).

    Article  ADS  Google Scholar 

  31. J. Barnes and P. Hut, Nature 324, 446 (1986).

    Article  ADS  Google Scholar 

  32. N. Katz, Astrophys. J. 391, 502 (1992).

    Article  ADS  Google Scholar 

  33. M. Mori, Y. Yoshii, T. Tsujimoto, et al., Astrophys. J. 478, 21 (1997).

    Article  ADS  Google Scholar 

  34. A. Rosen and J. N. Bregman, Astrophys. J. 440, 634 (1995).

    Article  ADS  Google Scholar 

  35. J. F. Navarro and S. D. M. White, Mon. Not. R. Astron. Soc. 265, 271 (1993).

    ADS  Google Scholar 

  36. D. Z. Wiebe, A. V. Tutukov, and B. M. Shustov, Astron. Rep. 42, 1 (1998).

    ADS  Google Scholar 

  37. I.V. Igumenshchev, B.M. Shustov, and A.V. Tutukov, Astron. Astrophys. 234, 364 (1990).

    Google Scholar 

  38. J. A. Sellwood, Mon. Not. R. Astron. Soc. 410, 1637 (2011).

    ADS  Google Scholar 

  39. E. Griv and M. Gedalin, Astron. J. 128, 1965 (2004).

    Article  ADS  Google Scholar 

  40. A. Khoperskov, M. Eremin, S. Khoperskov, et al., in Dynamics and Evolution of Disc Galaxies (2012, in press); arXiv:1007.2298 [astro-ph.CO] (2010).

  41. B.M. Shustov and D. S. Wiebe, Mon. Not. R. Astron. Soc. 319, 1047 (2000).

    Article  ADS  Google Scholar 

  42. M. Gustafsson, M. FairBairn, J. Sommer-Larsen, Phys. Rev. D 74, 123522 (2006).

    Article  ADS  Google Scholar 

  43. A. V. Maccio, G. Stinson, C. B. Brook, et al. Astrophys. J. (Letters) 744, L9 (2012).

    Article  ADS  Google Scholar 

  44. F. Governato, A. Zolotov, A. Pontzen, et al., Mon. Not. R. Astron. Soc. (2012, in press); arXiv:1202.0554 [astro-ph.CO] (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Khoperskov.

Additional information

Original Russian Text © S.A. Khoperskov, B.M. Shustov, A.V. Khoperskov, 2012, published in Astronomicheskii Zhurnal, 2012, Vol. 89, No. 9, pp. 736–744.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoperskov, S.A., Shustov, B.M. & Khoperskov, A.V. Interaction of the dark-matter cusp with the baryonic component in disk galaxies. Astron. Rep. 56, 664–671 (2012). https://doi.org/10.1134/S1063772912090041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772912090041

Keywords

Navigation