Skip to main content
Log in

AE Aquarii represents a new subclass of Cataclysmic Variables

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We analyze properties of the unique nova-like star AE Aquarii identified with a close binary system containing a red dwarf and a very fast rotating magnetized white dwarf. It cannot be assigned to any of the three commonly adopted sub-classes of Cataclysmic Variables: Polars, Intermediate Polars, and Accreting non-magnetized White Dwarfs. Our study has shown that the white dwarf in AE Aqr is in the ejector state and its dipole magnetic moment is µ≃1.5 × 1034 G cm3. It switched into this state due to intensive mass exchange between the system components during a previous epoch. A high rate of disk accretion onto the white dwarf surface resulted in temporary screening of its magnetic field and spin-up of the white dwarf to its present spin period. Transition of the white dwarf to the ejector state had occurred at a final stage of the spin-up epoch as its magnetic field emerged from the accreted plasma due to diffusion. In the frame of this scenario AE Aqr represents a missing link in the chain of Polars evolution and the white dwarf resembles a recycled pulsar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Warner, Cataclysmic Variable Stars (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  2. A. G. Masevich and A. V. Tutukov, Stellar Evolution: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  3. P. Ghosh and F. K. Lamb, Astrophys. J. Lett. 223, L83 (1978).

    Article  ADS  Google Scholar 

  4. D. T. Wickramasinghe and L. Ferrario, Publ. Astron. Soc. Pacif. 112, 873 (2000).

    Article  ADS  Google Scholar 

  5. J. F. Frank, A. R. King, and D. J. Raine, Accretion Power in Astrophysics (Cambridge Univ. Press, Cambridge, 2002).

    Book  Google Scholar 

  6. A. A. Wachmann, Aston. Nachr. 242, 382 (1931).

    ADS  Google Scholar 

  7. E. Zinner, Aston. Nachr. 265, 345 (1938).

    Article  ADS  Google Scholar 

  8. A. H. Joy, Publ. Astron. Soc. Pacif. 55, 283 (1943).

    Article  ADS  Google Scholar 

  9. K. G. Henize, Astrophys. J. 54, 89 (1949).

    ADS  Google Scholar 

  10. A. H. Joy, Astrophys. J. 120, 377 (1954).

    Article  ADS  Google Scholar 

  11. J. Patterson, Astrophys. J. 234, 978 (1979).

    Article  ADS  Google Scholar 

  12. J. Patterson, D. Branch, G. Chincarini, and E. L. Robinson, Astrophys. J. Lett. 240, L133 (1980).

    Article  ADS  Google Scholar 

  13. M. Eracleous, K. Horne, E. L. Robinson, et al., Astrophys. J. 433, 313 (1994).

    Article  ADS  Google Scholar 

  14. O. C. de Jager, P. J. Meintjes, D. O’Donoghue, and E. L. Robinson, Mon. Not. R. Astron. Soc. 267, 577 (1994).

    ADS  Google Scholar 

  15. W. F. Welsh, in Proceedings of AnnapolisWorkshop onMagnetic Cataclysmic Variables, Ed. by C. Hellier and K. Mukai, ASP Conf. Ser. 157, 357 (1999).

  16. U. A. Wynn, A. R. King, and K. Horne, Mon. Not. R. Astron. Soc. 286, 436 (1997).

    ADS  Google Scholar 

  17. W. F. Welsh, K. Horne, and R. Gomer, Mon. Not. R. Astron. Soc. 298, 285 (1998).

    Article  ADS  Google Scholar 

  18. K. Reinsch and K. Beuermann, Astron. Astrophys. 282, 493 (1994).

    ADS  Google Scholar 

  19. J. van Paradijs, H. Kraakman, and S. van Amerongen, Astron. Astrophys. Suppl. Ser. 79, 205 (1989).

    ADS  Google Scholar 

  20. A. Bruch, Astron. Astrophys. 251, 59 (1991).

    ADS  Google Scholar 

  21. W. F. Welsh, K. Horne, and R. Gomer, Mon. Not. R. Astron. Soc. 275, 649 (1995).

    ADS  Google Scholar 

  22. O. C. de Jager, Astrophys. J. Suppl. Ser. 90, 775 (1994).

    Article  ADS  Google Scholar 

  23. J. P. Osborne, K. L. Clayton, D. O’Donoghue, et al., in Magnetic Cataclysmic Variables, Ed. by D. Buckley and B. Warner, ASP Conf. Ser. 85, 368 (1995).

  24. C.-S. Choi, T. Dotani, and P. C. Agrawal, Astrophys. J. 525, 399 (1999).

    Article  ADS  Google Scholar 

  25. C.-S. Choi and T. Dotani, Astrophys. J. 646, 1149 (2006).

    Article  ADS  Google Scholar 

  26. K. Itoh, S. Okada, M. Ishida, and H. Kunieda, Astrophys. J. 639, 397 (2006).

    Article  ADS  Google Scholar 

  27. C.W. Mauche, Astrophys. J. 706, 130 (2009).

    Article  ADS  Google Scholar 

  28. T. S. Bastian, G. A. Dulk, and G. Chanmugam, Astrophys. J. 324, 431 (1988).

    Article  ADS  Google Scholar 

  29. M. Abada-Simon, J. Casares, A. Evens, et al., Astron. Astrophys. 433, 1063 (2005).

    Article  ADS  Google Scholar 

  30. H. van der Laan, Nature 211, 1131 (1966).

    Article  ADS  Google Scholar 

  31. Y. Terada, T. Hayashi, and M. Ishida, Publ. Astron. Soc. Jpn. 60, 387 (2008).

    ADS  Google Scholar 

  32. Y. Terada and T. Dotani, in High Energy Emission from Pulsars and their Systems, Ed. by N. Rea and D. F. Torres, Astrophys. Space Sci. Proc. Ser. (Springer, Berlin, Heidelberg, 2010), p. 563.

    Google Scholar 

  33. P. J. Meintjes, O. C. de Jager, B. C. Raubenheimer, et al., Astrophys. J. 434, 292 (1994).

    Article  ADS  Google Scholar 

  34. P.M. Chadwick, J. E. Dickinson, M. R. Dickinson, et al., Astropart. Phys. 4, 99 (1995).

    Article  ADS  Google Scholar 

  35. M. J. Lang, J. H. Buckley, D. A. Carter-Lewis, et al., Astropart. Phys. 9, 203 (1998).

    Article  ADS  Google Scholar 

  36. N. R. Ikhsanov and P. L. Biermann, Astron. Astrophys. 445, 305 (2006).

    Article  ADS  Google Scholar 

  37. N. Sidro, J. Cortina, C.W. Mauche, et al., in Proceedings of the 30th International Cosmic Ray Conference, Ed. by R. Caballero et al. (Mexico, 2008), vol. 2, p. 715.

  38. N. R. Ikhsanov, V. V. Neustroev, and N. G. Beskrovnaya, Astron. Lett. 30, 675 (2004).

    Article  ADS  Google Scholar 

  39. M. Eracleous and K. Horne, Astrophys. J. 471, 427 (1996).

    Article  ADS  Google Scholar 

  40. N. G. Beskrovnaya, N. R. Ikhsanov, A. Bruch, and N. M. Shakhovskoy, Astron. Astrophys. 307, 840 (1996).

    ADS  Google Scholar 

  41. M. Abada-Simon, T. S. Bastian, and K. Horne, in Magnetic Cataclysmic Variables, Ed. by D. Buckley and B. Warner, ASP Conf. Ser. 85, 355 (1995).

  42. D. Q. Lamb and J. Patterson, in Cataclysmic Variables and Related Objects, Proceedings of the 72nd Colloquium, Haifa, 1982 (Reidel, Dordrecht, 1983), p. 229.

  43. M. Cropper, Mon. Not. R. Astron. Soc. 222, 225 (1986).

    ADS  Google Scholar 

  44. G. Chanmugam and J. Frank, Astrophys. J. 320, 746 (1987).

    Article  ADS  Google Scholar 

  45. N. R. Ikhsanov, V. V. Neustroev, and N. G. Beskrovnaya, Astron. Astrophys. 421, 1131 (2004).

    Article  ADS  Google Scholar 

  46. J.-M. Hameury, A. R. King, and J.-P. Lasota, Mon. Not. R. Astron. Soc. 218, 695 (1986).

    ADS  Google Scholar 

  47. N. R. Ikhsanov, Astrophys. J. Lett. 640, L59 (2006).

    Article  ADS  Google Scholar 

  48. V. F. Shvartsman, Radiofizika 13, 1852 (1970).

    Google Scholar 

  49. V. M. Lipunov, Sov. Astron. 24, 722 (1980).

    ADS  Google Scholar 

  50. R. E. Davies and J. E. Pringle, Mon. Not. R. Astron. Soc. 196, 209 (1981).

    ADS  Google Scholar 

  51. K. J. Pearson, K. Horne, and W. Skidmore, Mon. Not. R. Astron. Soc. 338, 1067 (2003).

    Article  ADS  Google Scholar 

  52. N. R. Ikhsanov and N. G. Beskrovnaya, in Interacting Binaries: Accretion and Synchronization, Proceedings of the Conference, Crimean Astrophys. Observ., Ukraine, June 20–26, 2008 (2011, in press); arXiv:0809.1169 [astro-ph] (2008).

  53. J. T. Gosling, M. F. Thomsen, S. J. Bame, et al., J. Geophys. Res. 96, 14097 (1991).

    Article  ADS  Google Scholar 

  54. V. M. Lipunov, Astrophysics of Neutron Stars (Nauka, Moscow, 1987; Springer, Heidelberg, 1992).

    Google Scholar 

  55. V. V. Usov, Sov. Astron. Lett. 14, 258 (1988).

    ADS  Google Scholar 

  56. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

    Google Scholar 

  57. N. R. Ikhsanov, Astron. Astrophys. 338, 521 (1998).

    ADS  Google Scholar 

  58. N. R. Ikhsanov, S. Jordan, and N. G. Beskrovnaya, Astron. Astrophys. 385, 152 (2002).

    Article  ADS  Google Scholar 

  59. S. Jordan, Astron. Astrophys. 265, 570 (1992).

    ADS  Google Scholar 

  60. L. A. Artsimovich and R. Z. Sagdeev, Plasma Physics for Physicists (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  61. J. Arons and E. T. Scharlemann, Astrophys. J. 231, 854 (1979).

    Article  ADS  Google Scholar 

  62. D. Schönberner, T. Driebe, and T. Blöcker, Astron. Astrophys. 356, 929 (2000).

    ADS  Google Scholar 

  63. M. Livio, in Millisecond Pulsars. A Decade of Surprise, Proceedings of the Conference, Colorado, 1994, Ed. by A. S. Fruchter, M. Tavani, and D. C. Backer (Astron. Soc. Pacif. Publ., San Francisco, 1995), p. 105.

    Google Scholar 

  64. M. Livio and J. E. Pringle, Astrophys. J. 505, 339 (1998).

    Article  ADS  Google Scholar 

  65. P. J. Meintjes, Mon. Not. R. Astron. Soc. 336, 265 (2002).

    Article  ADS  Google Scholar 

  66. N. R. Ikhsanov, Astron. Astrophys. 347, 915 (1999).

    ADS  Google Scholar 

  67. G. S. Bisnovatyi-Kogan and B. V. Komberg, Sov. Astron. 18, 217 (1974).

    ADS  Google Scholar 

  68. D. T. Wickramasinghe, private commun. (2006).

  69. S. Konar and A. R. Choudhuri, Mon. Not. R. Astron. Soc. 348, 661 (2004).

    Article  ADS  Google Scholar 

  70. R. V. E. Lovelace, M. M. Romanova, and G. S. Bisnovatyi-Kogan, Astrophys. J. 625, 957 (2005).

    Article  ADS  Google Scholar 

  71. A. Cumming, Mon. Not. R. Astron. Soc. 333, 589 (2002).

    Article  ADS  Google Scholar 

  72. G. S. Bisnovatyi-Kogan, Phys. Usp. 49, 53 (2006).

    Article  ADS  Google Scholar 

  73. D.G. Yakovlev and V. A. Urpin, Sov. Astron. 24, 303 (1980).

    ADS  Google Scholar 

  74. A. Y. Potekhin, D. A. Baiko, P. Haensel, and D. G. Yakovlev, Astron. Astrophys. 346, 345 (1995).

    ADS  Google Scholar 

  75. I. L. Andronov and Yu. B. Yavorskij, Contrib. Astron. Observ. Skalnate Pleso 20, 155 (1990).

    ADS  Google Scholar 

  76. N. R. Ikhsanov, Astron. Astrophys. 325, 1045 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Ikhsanov.

Additional information

Original Russian Text © N.R. Ikhsanov, N.G. Beskrovnaya, 2012, published in Astronomicheskii Zhurnal, 2012, Vol. 89, No. 8, pp. 659–673.

Translated by the author

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikhsanov, N.R., Beskrovnaya, N.G. AE Aquarii represents a new subclass of Cataclysmic Variables. Astron. Rep. 56, 595–608 (2012). https://doi.org/10.1134/S1063772912070025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772912070025

Keywords

Navigation