Skip to main content
Log in

The age-metallicity relation in the thin disk of the galaxy

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

HST trigonometric distances, photometric metallicities, isochronic ages from the second revised version of the Geneva-Copenhagen survey, and uniform spectroscopic Fe and Mg abundances from our master catalog are used to construct and analyze the age-metallicity and age-relative Mg abundance relations for stars of the thin disk. The influences of selection effects are discussed in detail. It is demonstrated that the radial migration of stars does not lead to appreciable distortions in the age dependence of the metallicity. During the first several billion years of the formation of the thin disk, the interstellarmaterial in this disk was, on average, fairly rich in heavy elements (〈[Fe/H]〉 ≈ −0.2) and poorly mixed. However, the metallicity dispersion continuously decreased with age, from σ [Fe/H] ≈ 0.22 to ≈0.13. All this time, the mean relative abundance of Mg was somewhat higher than the solar value (〈[Mg/Fe]〉 ≈ 0.1). Roughly four to five billion years ago, the mean metallicity began to systematically increase, while retaining the same dispersion; the mean relative Mg abundance began to decrease immediately following this. The number of stars in this subsystem increased sharply at the same time. These properties suggest that the star-formation rate was low in the initial stage of formation of the thin disk, but abruptly increased about four to five billion years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Twarog, Astrophys. J. 242, 242 (1980).

    Article  ADS  Google Scholar 

  2. B. Stromgren, Observatory Astrophys. Lab. Univ. Helsinky Rep. 6, 7 (1984).

    ADS  Google Scholar 

  3. V. A. Marsakov, A. A. Suchkov, and Yu. G. Shevelev, Astrophys. Space Sci. 172, 51 (1990).

    Article  ADS  Google Scholar 

  4. B. Edvardsson, J. Andersen, B. Gustafsson, et al., Astron. Astrophys. 275, 101 (1993).

    ADS  Google Scholar 

  5. S. Feldzing, J. Holmberg, and J. R. Hurley, Astron. Astrophys. 377, 911 (2001).

    Article  ADS  Google Scholar 

  6. B. Nordstrom, M. Mayor, J. Andersen, et al., Astron. Astrophys. 418, 989 (2004).

    Article  ADS  Google Scholar 

  7. J. Holmberg, B. Nordstrom, and J. Andersen, Astron. Astrophys. 501, 941 (2009); arXiv:0811.3982v1 [astroph] (2008).

    Article  ADS  Google Scholar 

  8. D. S. Sivia, Data Analysis: A Baysian Tutorial (Clarendon, Oxford, 1996).

    Google Scholar 

  9. F. Pont and L. Eyer, Mon. Not. R. Astron. Soc. 351, 487 (2004).

    Article  ADS  Google Scholar 

  10. H. J. Rocha-Pinto, W. J. Maciel, J. Scalo, and C. Flynn, Astron. Astrophys. 358, 850 (2000).

    ADS  Google Scholar 

  11. H. J. Rocha-Pinto, C. Flynn, J. Scalo, et al., Astron. Astrophys. 423, 517 (2004).

    Article  ADS  Google Scholar 

  12. H. J. Rocha-Pinto, R. H. O. Rangel, G. F. Porto de Mello, et al., Astron. Astrophys. 453, L.9 (2006).

    Article  ADS  Google Scholar 

  13. M. Grenon, J. Astrophys. Astron. 8, 123 (1987).

    Article  ADS  Google Scholar 

  14. Yu. G. Shevelev and V. A. Marsakov, Astron. Zh. 72, 321 (1995) [Sov. Astron. 35, 284 (1991)].

    ADS  Google Scholar 

  15. N. Reid, E. L. Turner, M. C. Turnbull, et al., Astrophys. J. 665, 767 (2007).

    Article  ADS  Google Scholar 

  16. M. Haywood, Mon. Not. R. Astron. Soc. 337, 151 (2002).

    Article  ADS  Google Scholar 

  17. P. Demarque, J.-H. Woo, Y.-C. Kim, and S. K. Yi, Astrophys. J. Suppl. Ser. 155, 667 (2004).

    Article  ADS  Google Scholar 

  18. M. Haywood, Mon. Not. R. Astron. Soc. 371, 1760 (2006).

    Article  ADS  Google Scholar 

  19. M. Haywood, Mon. Not. R. Astron. Soc. 388, 1175 (2008).

    Article  ADS  Google Scholar 

  20. R. Roskar, V. P. Debattista, T. R. Quinn, et al., in The Galaxy Disk in Cosmological Context, Proceedings of the IAU Symp. No. 254, Ed. by J. Andersen, J. Bland-Hawthorn, and B. Nordstr’om(Cambridge Univ., Cambridge, 2009), p. 64.

    Google Scholar 

  21. Y. Karatas, S. Bilir, and W. J. Shuster, Mon. Not. R. Astron. Soc. 360, 1345 (2005).

    Article  ADS  Google Scholar 

  22. W. J. Schuster, T. C. Beers, R. Michel, et al., Astron. Astrophys. 422, 527 (2004).

    Article  ADS  Google Scholar 

  23. J. Holmberg, B. Nordstrom, and J. Andersen, Astron. Astrophys. 475, 519 (2007).

    Article  ADS  Google Scholar 

  24. T.V. Borkova and V. A. Marsakov, Astron. Zh. 82, 453 (2005) [Astron. Rep. 48, 405 (2004)].

    Google Scholar 

  25. L. Girargi, A. Bressan, C. Chiosi, et al., Astron. Astrophys. 141, 371 (2000).

    ADS  Google Scholar 

  26. B. Salasnich, L. Girardi, A. Weiss, et al., Astron. Astrophys. 361, 1023 (2000).

    ADS  Google Scholar 

  27. V. V. Koval’, V. A. Marsakov, and T. V. Borkova, Astron. Zh. 86, 844 (2009) [Astron. Rep. 53, 785 (2008)].

    Google Scholar 

  28. C. Flynn, J. Sommer-Larsen, and P. R. Christensen, Mon. Not. R. Astron. Soc. 281, 1027 (1996).

    ADS  Google Scholar 

  29. K. Fuhrmann, in The First Stars, Proceedings of the MPA/ESO Workshop, Ed. by A. Weiss, T. G. Abel, and V. Hill (Springer, Berlin, 2000), p. 68.

    Chapter  Google Scholar 

  30. V. A. Marsakov and A. A. Suchkov Astron. Zh. 54, 1232 (1977) [Sov. Astron. 8, 700 (1964)].

    ADS  Google Scholar 

  31. A. A. Suchkov, Astrophys. J. 535, L107 (2000).

    Article  ADS  Google Scholar 

  32. M. Grenon, in Age des Etoiles, Proceedings of the IAU Colloquium No. 17, Paris, France, Ed. by G. Caurel de Strobel and A. M. Delpface (Observatoire de Paris-Meudon, 1972), p. 55.

  33. V. A. Marsakov and T. V. Borkova, Pis’maAstron. Zh. 32, 419 (2006) [Astron. Rep. 49, 376 (2005)].

    Google Scholar 

  34. B. E. Reddy, D. L. Lambert, and C. Allende Prieto, Mon. Not. R. Astron. Soc. 367, 1329 (2006).

    Article  ADS  Google Scholar 

  35. F. Matteucci, The Chemical Evolution of the Galaxy, Astrophys. Space Sci. Library, vol. 253 (Kluwer, Dordrecht, 2001).

    Book  Google Scholar 

  36. T. Tsujimoto, K. Nomoto, Y. Yoshii, et al., Mon. Not. R. Astron. Soc. 277, 945 (1995).

    ADS  Google Scholar 

  37. G. Fasano, B. M. Poggianti, W. J. Couch, et al., Astrophys. J. 542, 673 (2000).

    Article  ADS  Google Scholar 

  38. V. Desai, J. J. Dalcanton, A. Aragon-Salamanca, et al., Astrophys. J. 660, 1151 (2007).

    Article  ADS  Google Scholar 

  39. D. J. Wilman, A. Oemler, J. S. Mulchaey, et al., Astrophys. J. 692, 298 (2009).

    Article  ADS  Google Scholar 

  40. A. E. Dolphin, D. R. Weisz, and E.D. Skillman, in Resolved Stellar Populations, Ed. by D. Valls-Gabaud and M. Chavez (Astron. Soc Pacif., San Francisco, 2005).

    Google Scholar 

  41. E. Tolstoy, V. Hill, and M. Tosi, Ann. Rev. Astron. Astrophys. 47, 371 (2009).

    Article  ADS  Google Scholar 

  42. A. A. Dariush, S. Raychaudhury, T. J. Ponman, et al., Mon. Not. R. Astron. Soc. 405, 1873 (2010).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Marsakov, V.V. Koval’, T.V. Borkova, M.V. Shapovalov, 2011, published in Astronomicheskii Zhurnal, 2011, Vol. 88, No. 8, pp. 726–742.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsakov, V.A., Koval’, V.V., Borkova, T.V. et al. The age-metallicity relation in the thin disk of the galaxy. Astron. Rep. 55, 667–682 (2011). https://doi.org/10.1134/S1063772911080063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772911080063

Keywords

Navigation