Skip to main content
Log in

Polarimetric differences between Schwarzschild and Kerr black holes in active galactic nuclei

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

If the linear polarization of the optical emission of active galactic nuclei (AGNs) arises in magnetized accretion disk (the Milne problem), the degree of polarization should depend strongly on the spin of the central black hole. For the same black hole luminosities and masses, the polarization is substantially higher for rotating Kerr than for non-rotating Schwarzschild black holes. Statistically, this means that the majority of AGNs displaying appreciable linear polarization should have Kerr black holes. The spin dependence of the polarization is due to the fact that the radius of the innermost stable circular orbit r isco depends on the spin—this radius is three gravitational radii for a Schwarzschild black hole, and a factor of six smaller for a rapidly rotating black hole. This means that the magnetic field in the region of emergence of the optical emission, which decreases with distance from r isco , is higher for a non-rotating than for a rapidly rotating black hole. This higher magnetic field gives rise to strong Faraday depolarization, explaining the effect considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Krolik, in Black Holes: Aspects of Black Hole Physics and Astrophysics, Ed. by M. Livio and A. M. Koekemoer (CambridgeUniv., Cambridge, 2007); article arXiv:0709.1489 [astro-ph] (2007).

    Google Scholar 

  2. S. Shapiro, in Black Holes: Aspects of Black Hole Physics and Astrophysics, Ed. by M. Livio and A. M. Koekemoer (Cambridge Univ., Cambridge, 2007); arXiv:0711.1537 [astro-ph] (2007).

    Google Scholar 

  3. R. D. Blandford, in Active Galactic Nuclei, Lecture Notes 1990, Saas-Fee Advanced Course 20, Ed. by T. J.-L. Courvoisier and M. Mayer (Springer, New York, 1990).

    Chapter  Google Scholar 

  4. S. Chandrasekhar, Radiative Transfer (Clarendon, Oxford, 1950).

    MATH  Google Scholar 

  5. N. A. Silant’ev, Astron. Astrophys. 383, 326 (2002).

    Article  ADS  Google Scholar 

  6. N. A. Silant’ev, M. Yu. Piotrovich, Yu. N. Gnedin, and T. M. Natsvlishvili, Astron. Astrophys. 507, 171 (2009).

    Article  ADS  Google Scholar 

  7. N. A. Silant’ev, Astron. Astrophys. 433, 1117 (2005).

    Article  ADS  Google Scholar 

  8. W. M. Zhang, Y. Lu, and S. M. Zhang, Chin. J. Astron. Astrophys. 5, 347 (2005); arXiv:astroph/0501365 (2005).

    Article  ADS  Google Scholar 

  9. K. D. Murphy, T. Yaqoob, M. Dovciak, and V. Karas, Astrophys. J. 701, 635 (2009); arXiv:0906.4713 [astro-ph] (2009).

    Article  ADS  Google Scholar 

  10. S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon, Oxford, 1983; Mir, Moscow, 1986).

    MATH  Google Scholar 

  11. D.-X. Wang, K. Xiao, and W.-H. Lei, Mon. Not. R. Astron. Soc. 335, 655 (2002).

    Article  ADS  Google Scholar 

  12. D.-X. Wang, R.-Y. Ma, W.-H. Lei, and G.-Z. Yao, Astrophys. J. 595, 109 (2003).

    Article  ADS  Google Scholar 

  13. V. I. Pariev, E. G. Blackman, and S. A. Boldyrev, Astron. Astrophys. 407, 403 (2003).

    Article  ADS  Google Scholar 

  14. L.-X. Li, Astron. Astrophys. 393, 469 (2002).

    Article  ADS  Google Scholar 

  15. R.-Y. Ma, F. Yang, and D.-X. Wang, Astrophys. J. 671, 1981 (2007).

    Article  ADS  Google Scholar 

  16. S. Poindexter, N. Morgan, and C. Kochanek, Astrophys. J. 673, 34 (2008).

    Article  ADS  Google Scholar 

  17. Y. Shen and A. Loeb, Astrophys. J. 725, 249 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.A. Silant’ev, M.Yu. Piotrovich, Yu.N. Gnedin, T.M. Natsvlishvili, 2011, published in Astronomicheskii Zhurnal, 2011, Vol. 88, No. 8, pp. 743–749.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silant’ev, N.A., Piotrovich, M.Y., Gnedin, Y.N. et al. Polarimetric differences between Schwarzschild and Kerr black holes in active galactic nuclei. Astron. Rep. 55, 683–688 (2011). https://doi.org/10.1134/S1063772911070079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772911070079

Keywords

Navigation