Skip to main content
Log in

The evolutionary status of the most massive WNh stars in close binary systems. NGC 3603-A1

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The evolution of the components of the unique, massive, close binary system NGC 3603-A1, which consists of stars of spectral types WN6ha and WN6h, is analyzed. The component masses are estimated to be 116 and 89M , close to the highest measured stellar masses. Numerical modeling of the evolution of the components has been carried out, taking into account mass loss via the stellar winds of the two massive stars. It is shown that the maximum possible initial component masses are close to 140 and 125M . The components are currently slightly evolved main-sequence stars, with a comparative low degree of helium enrichment at their surfaces. Further evolution of the system will lead to filling of the Roche lobe of the primary and subsequent evolution in a common envelope. This may lead to the merger of the components, with the evolution of the system ending in the formation of a singlemassive black hole after the second supernova explosion. Otherwise, depending on the masses of the resulting black holes, either a binary system of two black holes or two unbound black holes may form, accompanied by gamma-ray bursts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Tutukov, A. V. Fedorova, and A. M. Cherepashchuk, Astron. Zh. 85, 728 (2008) [Astron. Rep. 52, 656 (2008)].

    Google Scholar 

  2. G. Rauw, J.-M. Vreux, E. Gosset, et al., Astron. Astrophys. 306, 771 (1996).

    ADS  Google Scholar 

  3. A. Z. Bonanos, K. Z. Stanek, A. Udalski, et al., Astrophys. J. 611, L33 (2004).

    Article  ADS  Google Scholar 

  4. G. Rauw, M. De Becker, Y. Naze, et al., Astron. Astrophys. 420, L9 (2004).

    Article  ADS  Google Scholar 

  5. G. Rauw, J. Manfroid, E. Gosset, et al., Astron. Astrophys. 463, 981 (2007).

    Article  ADS  Google Scholar 

  6. V. S. Niemela, R. C. Gamen, R. Barba, et al., Mon. Not. R. Astron. Soc. 389, 1447 (2008).

    Article  ADS  Google Scholar 

  7. O. Schnurr, J. Casoli, A.-N. Chene, et al., Mon. Not. R. Astron. Soc. 389, L38 (2008).

    Article  ADS  Google Scholar 

  8. L. Drissen, A. F. J. Moffat, N. R. Walborn, et al., Astron. J. 110, 2235 (1995).

    Article  ADS  Google Scholar 

  9. O. Schnurr, A. F. J. Moffat, A. Villar-Sbaffi, et al., Mon. Not. R. Astron. Soc. 395, 823 (2009).

    Article  ADS  Google Scholar 

  10. A. F. J. Moffat, V. Pojtras, S. Marchenko, et al., Astron. J. 128, 2854 (2004).

    Article  ADS  Google Scholar 

  11. P. A. Crowther and L. Dessart, Mon. Not. R. Astron. Soc. 296, 622 (1998).

    Article  ADS  Google Scholar 

  12. D. R. Gies, in A Massive Star Odyssey, from Main Sequence to Supernova, Ed. by K.A. van der Hucht, A. Herrero, and C. Esteban (ASP, San Francisco, 2003), p. 91.

    Google Scholar 

  13. P. S. Conti, P. A. Crowther and C. Leitherer, in From Luminous Hot Stars to Starburst Galaxies (Cambridge Univ., Cambridge, 2008), p. 132.

    Book  Google Scholar 

  14. G. Meynet and A. Maeder, Astron. Astrophys. 361, 101 (2000).

    ADS  Google Scholar 

  15. A. Heger and N. Langer, Astrophys. J. 544, 1016 (2000).

    Article  ADS  Google Scholar 

  16. I. Hunter, D. J. Lennon, P. L. Dufton, et al., Astron. Astrophys. 479, 54 (2008).

    Article  Google Scholar 

  17. G. Meynet and A. Maeder, Astron. Astrophys. 464, L11 (2007); arXiv:0701494 [astro-ph] (2007).

    Article  ADS  Google Scholar 

  18. S. E. de Mink, M. Cantiello, N. Langer, et al., Astron. Astrophys. 497, 243 (2009).

    Article  ADS  Google Scholar 

  19. C. A. Iglesias and F. J. Rogers, Astrophys. J. 464, 943 (1996).

    Article  ADS  Google Scholar 

  20. D. R. Alexander and J. W. Ferguson, Astrophys. J. 437, 879 (1994).

    Article  ADS  Google Scholar 

  21. D. G. Yakovlev and V. A. Urpin, Astron. Zh. 57, 526 (1980) [Sov. Astron. 24, 303 (1980)].

    ADS  Google Scholar 

  22. G. R. Caughlan, W. A. Fowler, M. J. Harris, et al., Atom. Data Nucl. Data Tables 32, 197 (1985).

    Article  ADS  Google Scholar 

  23. A. V. Tutukov and A. V. Fedorova, Astron. Zh. 78, 1008 (2001) [Astron. Rep. 45, 882 (2001)].

    Google Scholar 

  24. M. R. Mokiem, A. de Koter, C. J. Evans, et al., Astron. Astrophys. 465, 1003 (2007).

    Article  ADS  Google Scholar 

  25. J. S. Vink, A. de Koter, and R. Kotak, in Mass Loss from Stars and the Evolution of Stellar Clusters, Ed. by A. de Koter, L. J. Smith, and L. B. F.M. Waters, ASP Conf. Ser. 388, 47 (2008); arXiv:astroph/0611749 (2006).

  26. J. S. Vink and R. Kotak, Rev. Mex. Astron. Astrofis. (Ser. Conf.) 30, 17 (2007).

    ADS  Google Scholar 

  27. R. Kudritzki and M. Urbaneja, arXiv:astroph/0607460 (2006).

  28. J. S. Vink, in Stars with the B[e] Phenomenon, Ed. by M. Kraus and A. S. Miroshnichenko, ASP Conf. Ser. 355, 173 (2006).

  29. A. M. Cherepashchuk, Astron. Zh. 67, 955 (1990) [Sov. Astron. 34, 481 (1990)].

    ADS  Google Scholar 

  30. P. P. Eggleton, Astrophys. J. 268, 368 (1983).

    Article  ADS  Google Scholar 

  31. S. Habergham, J. Anderson, and P. James, Astrophys. J. 717, 342 (2010); arXiv:1005.0511 [astroph. CO] (2010).

    Article  ADS  Google Scholar 

  32. A. Maeder and G. Meynet, Astron. Astrophys. 361, 159 (2000).

    ADS  Google Scholar 

  33. R. Foley, N. Smith, M. Ganeshalingam, et al., Astrophys. J. 657, L105 (2007).

    Article  ADS  Google Scholar 

  34. J. Eldridge, Mon. Not. R. Astron. Soc. 377, L29 (2007).

    Article  ADS  Google Scholar 

  35. A. V. Tutukov and A. M. Cherepashchuk, Astron. Zh. 80, 419 (2003) [Astron. Rep. 47, 386 (2003)].

    Google Scholar 

  36. A. V. Tutukov and A. M. Cherepashchuk, Astron. Zh. 81, 43 (2004) [Astron. Rep. 48, 39 (2004)].

    Google Scholar 

  37. A. V. Tutukov and A. V. Fedorova, Astron. Zh. 81, 589 (2004) [Astron. Rep. 48, 534 (2004)].

    Google Scholar 

  38. A. Tutukov and L. Yungelson, Mon. Not. R. Astron. Soc. 268, 871 (1994).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Tutukov, A.V. Fedorova, A.M. Cherepashchuk, 2011, published in Astronomicheskii Zhurnal, 2011, Vol. 88, No. 3, pp. 274–283.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tutukov, A.V., Fedorova, A.V. & Cherepashchuk, A.M. The evolutionary status of the most massive WNh stars in close binary systems. NGC 3603-A1. Astron. Rep. 55, 247–255 (2011). https://doi.org/10.1134/S1063772911030085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772911030085

Keywords

Navigation