Skip to main content
Log in

Evolution of the star-formation rate and extinction in disk galaxies at high z

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A model for the evolution of disk galaxies is used to investigate evolutionary variations in the star-formation rate (SFR) and extinction in disk galaxies beginning from their formation. The results obtained are compared with observational estimates of the SFRe and extinction at cosmological redshifts z ≤ 7. The formof themass-radius relation for disk galaxies is discussed. It is proposed that the mass-radius relation is a consequence of a mass-angular momentum relation. Analysis of the influence of the form of the mass-radius relation on the evolutionary variations in the SFR and extinction testify that this influence is very small. The SFRs and extinctions at various redshifts z obtained in the models are in agreement with observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Schaerer and S. de Barros, arXiv:1002.1090 [astro-ph] (2010).

  2. I. Labbé, V. González, R. J. Bouwens, et al., arXiv:0911.1356 [astro-ph] (2009).

  3. P. Cassata, O. Le Févre, B. Garilli, et al., arXiv:1003.3480 [astro-ph] (2010).

  4. R. Salvaterra, A. Ferrara, and P. Dayal, arXiv:1003.3873 [astro-ph] (2010).

  5. C. Firmani and A. Tutukov, Astron. Astrophys. 264, 37 (1992).

    ADS  Google Scholar 

  6. D. S. Wiebe, A. V. Tutukov, and B. M. Shustov, Astron. Rep. 42, 1 (1998).

    Article  ADS  Google Scholar 

  7. D. S. Wiebe, B. M. Shustov, and A. V. Tutukov, Astron. Astrophys. 345, 93 (1999).

    ADS  Google Scholar 

  8. V. V. Kostyunin, Astron. Zh. 72, 811 (1995) [Astron. Rep. 39, 722 (1995)].

    ADS  Google Scholar 

  9. A. V. Tutukov, Astron. Zh. 83, 589 (2006) [Astron. Rep. 50, 526 (2006)].

    Google Scholar 

  10. D. T. Maltby, A. Aragón-Salamanca, M. E. Gray, et al., Mon. Not. R. Astron. Soc. 402, 282 (2010).

    Article  ADS  Google Scholar 

  11. M. Puech, F. Hammer, H. Flores, et al., Astron. Astrophys. 510, 68 (2010).

    Article  ADS  Google Scholar 

  12. M. Bernardi, F. Shankar, J. B. Hyde, et al., arXiv:0910.1093 [astro-ph] (2009).

  13. R. J. Williams, R. F. Quadri, M. Franx, et al., arXiv:0906.4786 [astro-ph] (2009).

  14. I. Trujillo, G. Rudnick, H.-W. Rix, et al., Astrophys. J. 604, 521 (2004).

    Article  ADS  Google Scholar 

  15. A. A. Dutton, F. C. van den Bosch, S. M. Faber, et al., arXiv:1006.3558 [astro-ph] (2010).

  16. I. D. Karachentsev, V. E. Karachentseva, W. K. Huchtmeier, et al., Astron. J. 127, 2031 (2004).

    Article  ADS  Google Scholar 

  17. M. Schmidt, Astrophys. J. 137, 758 (1963).

    Article  MATH  ADS  Google Scholar 

  18. Van der Bergh, Astron. J. 67, 486 (1962).

    Article  ADS  Google Scholar 

  19. A. A. Kabanov, Astron. Zh. 87, 1 (2010) [Astron. Rep. 54, 489 (2010)].

    Google Scholar 

  20. K. Nomoto N. Tominaga, H. Umeda, et al., Nucl. Phys. A 777, 424 (2006).

    Article  ADS  Google Scholar 

  21. L. B. Hoek and M. A. T. Groenewegen, Astron. Astrophys. 123, 305 (1997).

    Google Scholar 

  22. Y. Beletsky, G. Carraro, V. D. Ivanov, et al., Astron. Astrophys. 508, 1279 (2009).

    Article  ADS  Google Scholar 

  23. H.W. Moos, K. R. Sembach, A. Vidal-Madjar, et al., Astrophys. Space Sci. 140, 3 (2002).

    Google Scholar 

  24. U. J. Sofia and D. M. Meyer, Astrophys. J. 554, 221 (2001).

    Article  ADS  Google Scholar 

  25. D. M. Meyer, J. A. Cardelli, and U. J. Sofia, Astrophys. J. 490, 103 (1997).

    Article  ADS  Google Scholar 

  26. Chemical Evolution from Zero to High Redshift, Ed. by M. Peimbert, J. R. Walsh, and M. R. Rosa, ESO Workshop (Springer, Berlin, 1999), p. 30.

    Google Scholar 

  27. H. Holweger, in Solar and Galactic Composition, Ed. by R. F. Willmmer-Schweingruber, AIP Conf. Proc. 598, 23 (2001).

  28. C. Allende Prieto, D. L. Lambert, and M. Asplund, Astrophys. J. 556, 63 (2001).

    Article  ADS  Google Scholar 

  29. C. Allende Prieto, D. L. Lambert, and M. Asplund, Astrophys. J. 573, 137 (2002).

    Article  ADS  Google Scholar 

  30. T. R. Robitaille and B. A. Whitney, Astrophys. J. 710, 11 (2010).

    Google Scholar 

  31. P. Capac, B. Mobasher, N. Z. Scoville, et al., arXiv:0910.0444 [astro-ph] (2009).

  32. T. Goto, T. Takagi, H. Matsuhara, et al., Astron. Astrophys. 514, A6 (2010).

    Article  ADS  Google Scholar 

  33. T. Takeuchi, V. Buat, S. Heinis, et al., Astron. Astrophys. 514, A4 (2010).

    Article  ADS  Google Scholar 

  34. D. S. Wiebe, A. V. Tutukov, and B. M. Shustov, Astron. Zh. 78, 977 (2001) [Astron. Rep. 45, 854 (2001)].

    Google Scholar 

  35. R.-P. Kudritzki, astro-ph/1002.5039 [astro-ph] (2010).

  36. S. Verley, E. Corbelli, C. Giovanardi, et al., Astron. Astrophys. 510, A64 (2010).

    Article  ADS  Google Scholar 

  37. S. Pinsonneault, H. Martel, M. Pieri, et al., astroph/1002.4881 [astro-ph] (2010).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Kabanov, A.V. Tutukov, B.M. Shustov, 2011, published in Astronomicheskii Zhurnal, 2011, Vol. 88, No. 3, pp. 218–227.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabanov, A.A., Tutukov, A.V. & Shustov, B.M. Evolution of the star-formation rate and extinction in disk galaxies at high z . Astron. Rep. 55, 193–201 (2011). https://doi.org/10.1134/S1063772911030024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772911030024

Keywords

Navigation