Skip to main content
Log in

The volume density of gas in disk galaxies with low HI surface densities

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Published data on rotation curves and the radial distribution of the surface density of neutral hydrogen (HI) in galaxies with a low gas content are used to calculate radial profiles of the volume density of HI in the planes of the galactic disks. A self-consistent model for the disks is used, taking into account the self-gravitation of the gas and the presence of a pseudo-isothermal, massive halo. Eleven low-surface-brightness (LSB) galaxies and three S0 galaxies in which HI is detected are considered. The gaseous and stellar disks are taken to be in equilibrium and axially symmetric, and the velocity dispersion in the stellar disk to be equal to the marginal value for gravitational perturbations; in general, this gives an upper limit for the gas density. It is shown that, on average, the gas volume densities are two orders of magnitude lower in LSB galaxies than in galaxies with normal brightnesses at the same R values, while the three S0 galaxies occupy an intermediate position. The volume density of gas observed at the galaxy peripheries are less than 10−27 g/cm3, even in the plane of the disk. The role of the UV background in ionizing outer regions is discussed. The obtained gas densities can be used to estimate the star-forming efficiency in regions of low density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bothun, C. Impey, and S. McGaugh, Publ. Astron. Soc. Pacif. 109, 745 (1997).

    Article  ADS  Google Scholar 

  2. J. Schaue, Astrophys. J. 609, 667 (2004).

    Article  ADS  Google Scholar 

  3. O. V. Abramova and A. V. Zasov, Astron. Zh. 85, 291 (2008) [Astron. Rep. 52, 257 (2008)].

    Google Scholar 

  4. A. K. Leroy, F. Walter, E. Brinks, et al., Astron. J. 136, 2782 (2008).

    Article  ADS  Google Scholar 

  5. T. Wong and L. Blitz, Astrophys. J. 569, 157 (2002).

    Article  ADS  Google Scholar 

  6. A. V. Kasparova and A. V. Zasov, Pis’ma Astron. Zh. 34, 174 (2008) [Astron. Lett. 34, 152 (2008)].

    Google Scholar 

  7. F. Bigiel, A. Leroy, F. Walter, et al., Astron. J. 136, 2846 (2008).

    Article  ADS  Google Scholar 

  8. N. Rahman, J. H. Howell, G. Helou, et al., Astrophys. J. 663, 908 (2007).

    Article  ADS  Google Scholar 

  9. N. Bergvall, J. R önnback, J. Masegosa, and G. Ostlin, Astron. Astrophys. 341, 697 (1999).

    ADS  Google Scholar 

  10. E. F. Bell, D. Barnaby, R. G. Bower, et al., Mon. Not. R. Astron. Soc. 312, 470 (2000).

    Article  ADS  Google Scholar 

  11. T. K. Wyder, D. C. Martin, T. A. Barlow, et al., Astrophys. J. 696, 1834 (2009).

    Article  ADS  Google Scholar 

  12. W. G. J. de Blok and J. M. van der Hulst, Astron. Astrophys. 336, 49 (1998).

    ADS  Google Scholar 

  13. G. A. Welch and L. J. Sage, Astrophys. J. 584, 260 (2003).

    Article  ADS  Google Scholar 

  14. L. Moore and Q. A. Parker, Publ. Astron. Soc. Pacif. 23, 165 (2007).

    Google Scholar 

  15. R. Sancisi and F. Fraternali, arXiv:0707.2377 [astroph] (2007).

  16. T. E. Pickering, C. D. Impey, J. H. van Gorkom, and G. D. Bothun, Astron. J. 114, 1858 (1997).

    Article  ADS  Google Scholar 

  17. W. G. J. de Blok, S. S. McGaugh, and J. M. van der Hulst, Mon. Not. R. Astron. Soc. 283, 18 (1996).

    ADS  Google Scholar 

  18. R. E. Swaters, B. F. Madore, F. C. van den Bosch, and M. Balcells, Astrophys. J. 583, 732 (2003).

    Article  ADS  Google Scholar 

  19. W. G. J. de Blok and S. S. McGaugh, Mon. Not. R. Astron. Soc. 290, 533 (1997).

    ADS  Google Scholar 

  20. W. G. J. de Blok, S. S. McGaugh, and V. C. Rubin, Astron. J. 122, 2396 (2001).

    Article  ADS  Google Scholar 

  21. J. M. van der Hulst, E. D. Skillman, T. R. Smith, et al., Astron. J. 106, 548 (1993).

    Article  ADS  Google Scholar 

  22. W. G. J. de Blok and A. Bosma, Astron. Astrophys. 385, 816 (2002).

    Article  ADS  Google Scholar 

  23. W. Walsh, L. Staveley-Smith, and T. Oosterloo, Astron. J. 113, 1591 (1997).

    Article  ADS  Google Scholar 

  24. E. Noordermeer, The Distribution of Gas, Stars and Dark Matter in Early-Type Disk Galaxies, Thesis (Rijksuniversiteit Groningen, The Netherlands, 2006).

    Google Scholar 

  25. B. Fuchs, Astrophys. Space Sci. 284, 719 (2003).

    Article  ADS  Google Scholar 

  26. A. V. Zasov, A. V. Khoperskov, and N. V. Tyurina, Pis’ma Astron. Zh. 30, 593 (2004) [Astron. Lett. 30, 593 (2004)].

    Google Scholar 

  27. A. V. Zasov, A. V. Khoperskov, and A. S. Saburova, Pis’ma Astron. Zh. (2011, in press).

  28. D. Pushe, D. Westphahl, E. Brinks, and J.-R. Roy, Astron. J. 103, 1841 (1992).

    Article  ADS  Google Scholar 

  29. G. R. Meurer, C. Carignan, S. Beaulieu, and K. Freeman, Astron. J. 111, 1551 (1996).

    Article  ADS  Google Scholar 

  30. R. K. de Naray, S. S. McGaugh, W. J. G. de Blok, and A. Bosma, Astrophys. J. Suppl. Ser. 165, 461 (2006).

    Article  ADS  Google Scholar 

  31. A. V. Zasov and O. V. Abramova, Astron. Zh. 83, 976 (2006) [Astron. Rep. 50, 874 (2006)].

    Google Scholar 

  32. A. V. Khoperskov, A. V. Zasov, and N. V. Tyurina, Astron. Zh. 80, 387 (2003) [Astron. Rep. 47, 357 (2003)].

    Google Scholar 

  33. E. F. Bell and R. S. de Jong, Astrophys. J. 550, 212 (2001).

    Article  ADS  Google Scholar 

  34. A. S. Saburova, Astron. Zh. (2011, in press).

  35. R. de Grijs and R. F. Peletier, Astron. Astrophys. 320, L21 (1997).

    ADS  Google Scholar 

  36. C. A. Narayan and C. J. Jog, Astron. Astrophys. 394, 89 (2002).

    Article  ADS  Google Scholar 

  37. N. G. Bochkarev and R. A. Syunyaev, Astron. Zh. 54, 957 (1977) [Sov. Astron. 21, 542 (1977)].

    ADS  Google Scholar 

  38. P. Maloney, Astrophys. J. 414, 41 (1993).

    Article  ADS  Google Scholar 

  39. J. B. Dove and J. M. Shull, Astrophys. J. 423, 196 (1994).

    Article  ADS  Google Scholar 

  40. L. J. Hoffman, E. E. Salpeter, and N. J. Carle, Astron. J. 122, 2428 (2001).

    Article  ADS  Google Scholar 

  41. P. R. Maloney and J. Bland-Hawthorn, in Stromlo Workshop on High-Velocity Clouds, Ed. by B. K. Gibson and M. E. Putman, ASP Conf. Ser. 166, 199 (1998).

  42. D.W. Sciama, Astron. Astrophys. 335, 12 (1998).

    ADS  Google Scholar 

  43. J. Bland-Hawthorn, K. S. Freeman, and P. J. Quinn, Astrophys. J. 490, 143 (1997).

    Article  ADS  Google Scholar 

  44. C. Cote, C. Carignan, and K. C. Freeman, Astron. J. 120, 327 (2000).

    Article  Google Scholar 

  45. P. M. W. Kalberla and L. Dedes, arXiv:0804.4831 [astro-ph] (2008).

  46. K. L. Shapiro, J. Gerssen, and R. P. van der Marel, Astron. J. 126, 2707 (2003).

    Article  ADS  Google Scholar 

  47. T. Oosterloo, F. Fraternali, and R. Sancisi, Astron. J. 134, 1019 (2007).

    Article  ADS  Google Scholar 

  48. F. Walter, E. Brinks, W. J. G. de Blok, et al., Astron. J. 136, 2563 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.V. Abramova, A.V. Zasov, 2011, published in Astronomicheskii Zhurnal, 2011, Vol. 88, No. 3, pp. 228–239.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramova, O.V., Zasov, A.V. The volume density of gas in disk galaxies with low HI surface densities. Astron. Rep. 55, 202–213 (2011). https://doi.org/10.1134/S1063772911030012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772911030012

Keywords

Navigation