Skip to main content
Log in

The theory of bypassed-isotope formation in the universe

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A Fermi-gas model for the atomic nucleus in the presence of a quantizing magnetic field is considered. The energy of the magnetized neutrons is determined taking into account the Pauli paramagnetism, and the energy of the magnetized protons taking into account Landau diamagnetism and Pauli paramagnetism. To determine the characteristics of the proton-gas energy in a quantizing magnetic field, we use a model for the proton motion in which the initial energy of the proton and the magnetic field strength enable estimation of the maximum Landau quantum number. The latter characterizes the proton motion perpendicular to the direction of the magnetic field. Due to the occupation of Landau levels by protons, it is possible to estimate the kinetic energy for continuous motion along the magnetic field from zero to a certain finite value. As a result, the magnetic field of a certain strength facilitates neutron evaporation from the nucleus and increases the stability of the protons in the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Saakyan, Equilibrium Configurations of Degenerate Gas Masses (Nauka, Moscow, 1978), p. 97 [in Russian].

    Google Scholar 

  2. N. G. Bochkarev, Magnetic Fields in the Cosmos (Nauka, Moscow, 1985), p. 143 [in Russian].

    Google Scholar 

  3. G. S. Bisnovatyi-Kogan, Yu. P. Popov, and A. A. Samokhin, Astrophys. Space Sci. 41, 321 (1976).

    Article  ADS  Google Scholar 

  4. G. S. Bisnovatyi-Kogan, Physical Problems in the Theory of Stellar Evolution (Nauka, Moscow, 1989), p. 330 [in Russian].

    Google Scholar 

  5. G. A. Shul’man, Yad. Fiz. 64, 370 (1991) [Phys. At. Nucl. 54, 322 (1991)].

    Google Scholar 

  6. G. A. Shul’man, DoctoralDissertation in Mathematical Physics (Inst. Fiziki AN Belorussii, Minsk, 1992).

    Google Scholar 

  7. G. A. Shul’man, Astron. Zh. 53, 755 (1976) [Sov. Astron. 20, 425 (1976)].

    ADS  Google Scholar 

  8. G. A. Shul’man, Astron. Zh. 53, 1218 (1976) [Sov. Astron. 20, 689 (1976)].

    ADS  Google Scholar 

  9. G. A. Shul’man, Astron. Zh. 54, 1041 (1977) [Sov. Astron. 21, 590 (1977)].

    ADS  Google Scholar 

  10. G. A. Shul’man, Astron. Zh. 66, 758 (1989) [Sov. Astron. 33, 393 (1989)].

    Google Scholar 

  11. G. A. Shul’man, Astron. Zh. 67, 334 (1990) [Sov. Astron. 34, 167 (1990)].

    ADS  Google Scholar 

  12. G. A. Shul’man, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 1, 102 (1994).

  13. G. A. Shul’man, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 2, 14 (1999).

  14. G. A. Shul’man, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 2, 50 (1999).

  15. V. O. Maslennikov and G. A. Shul’man, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 7, 31 (1999).

  16. V. O. Maslennikov, A. N. Pankrat’eva, and G. A. Shul’man, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 5, 3 (2001).

  17. G. A. Shul’man and V. S. Kostko, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 10, 3 (2006).

  18. B. M. Askerov, Electron Transport Phenomena In Semiconductors (Nauka, Moscow, 1985; World Sci., Singapore, 1994), p. 224.

    Google Scholar 

  19. G. A. Shul’man, Astron. Zh. 68, 101 (1991) [Sov. Astron. 35, 50 (1991)].

    ADS  Google Scholar 

  20. G. A. Shul’man, Astron. Zh. 69, 116 (1992) [Sov. Astron. 36, 58 (1992)].

    ADS  Google Scholar 

  21. W. Pauli, Works on Quantum Theory (Nauka, Moscow, 1977), p. 134 [in Russian].

    Google Scholar 

  22. M. S. Svirskii, Fiz. Met. Metalloved. 15, 635 (1963).

    Google Scholar 

  23. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1971).

    Google Scholar 

  24. H. Frauenfelder and E. Henley, Subatomic Physics (Prentice-Hall, Englewood Cliffs, NJ, 1974; Mir, Moscow, 1979).

    Google Scholar 

  25. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).

    Google Scholar 

  26. V. S. Kostko and G. A. Shul’man, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 3, 18 (2005).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.A. Shul’man, 2011, published in Astronomicheskii Zhurnal, 2011, Vol. 88, No. 3, pp. 295–302.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shul’man, G.A. The theory of bypassed-isotope formation in the universe. Astron. Rep. 55, 267–274 (2011). https://doi.org/10.1134/S1063772911020065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772911020065

Keywords

Navigation