Skip to main content
Log in

Relations estimated at shock discontinuities excited by coronal mass ejections

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

An analysis of SOHO/LASCO C3 data shows that there are discontinuities in the radial profiles of the plasma density within limited regions in front of each of ten coronal mass ejections, which represent shocks. The shock velocities in various events reach V ≈ 800–2500 km/s. A comparison of the dependence of the AlfvenicMach numberM A on the shock strength ρ 2/ρ 1 detected at distancesR > 10R⊙ from the center of the Sun with calculations carried out using ideal magnetic hydrodynamics shows that the effective ratio of specific heats γ describing processes inside the shock front varies from 2 to 5/3 (ρ 1 and ρ 2 are the densities in front of and behind the shock, and R⊙ is the solar radius). This corresponds to an effective number of degrees of freedom between two and three. A similar dependenceMA(ρ 2 1) was found for near-Earth bow shocks and interplanetary collisionless shocks. These features support the hypothesis that the studied discontinuities preceding coronal mass ejections are collisionless shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vourlidas, S. T. Wu, A. H. Wang, et al., Astrophys. J. 598, 1392 (2003).

    Article  ADS  Google Scholar 

  2. M. V. Eselevich and V. G. Eselevich, Astron. Zh. 84, 1046 (2007) [Astron. Rep. 51, 947 (2007)].

    Google Scholar 

  3. W. B. Manchester, A. Vourlidas, G. Tóth, et al., Astrophys. J. 648, 1448 (2008).

    Article  ADS  Google Scholar 

  4. M. V. Eselevich and V. G. Eselevich, Geophys. Res. Lett. 35, L22105 (2008).

    Article  ADS  Google Scholar 

  5. V. Ontiveros and A. Vourlidas, Astrophys. J. 693, 267 (2009).

    Article  ADS  Google Scholar 

  6. M. V. Eselevich, Astron. Zh. 87, 197 (2010) [Astron. Rep. 54, 173 (2010)].

    Google Scholar 

  7. G. Mann, H. Aurass, A. Klassen, et al., in Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona, ESA SP-446 (ESA, Paris, France, 1999), p. 477.

    Google Scholar 

  8. G. Mann, F. Jansen, R. J. MacDowall, et al., Astron. Astrophys. 348, 614 (1999).

    ADS  Google Scholar 

  9. G. E. Brueckner, R. A. Howard, M. J. Koomen, et al., Solar Phys. 162, 357 (1995).

    Article  ADS  Google Scholar 

  10. A. R. Kantrowitz and H. E. Petschec, in Plasma Physics in Theory and Application, Ed. by W. B. Kunkel (McGraw-Hill, New York, 1966).

    Google Scholar 

  11. C. F. Kennel, J. P. Edmiston, and T. Hada, AQuarter Century of Collisionless Shock Research (Department of Physics, Univ. of California, Los Angeles, CA, 1984).

    Google Scholar 

  12. H. Cremades and V. Bothmer, Astron. Astrophys. 422, 307 (2004).

    Article  ADS  Google Scholar 

  13. S. Yashiro, N. Gopalswamy, G. Michalek, et al., J. Geophys. Res. 109, A07105 (2004).

    Article  Google Scholar 

  14. Y.-M. Wang, N. R. Sheeley, D. G. Socker, et al., J. Geophys. Res. 105, 25133 (2000).

    Article  ADS  Google Scholar 

  15. K. Saito, A. I. Poland, and R. H. Munro, Solar Phys. 55, 121 (1977).

    Article  ADS  Google Scholar 

  16. D. E. Billing, A Guide to the Solar Corona (Academic Press, New York, 1966), p. 150.

    Google Scholar 

  17. G. Zimbardo, in Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 52 (2010).

    ADS  Google Scholar 

  18. R. Z. Sagdeev, in Questions of Plasma Theory, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964), p. 20 [in Russian].

    Google Scholar 

  19. G. N. Zastenker, N. L. Borodkova, O. L. Vaisberg, et al., Preprint Space Res. Inst. No. 841 (Space Research Inst., Moscow, 1983).

    Google Scholar 

  20. V. Formisano, P. C. Hedgecoc, G. Moreno, et al., J. Geophys. Res. 78, 3731 (1973).

    Article  ADS  Google Scholar 

  21. E. W. Greenstadt, C. T. Russel, J. T. Gosling, et al., J. Geophys. Res. 85, 2124 (1980).

    Article  ADS  Google Scholar 

  22. S. J. Bame, J. R. Asbridge, J. T. Gosling, et al., Space Sci. Rev. 23, 75 (1979).

    Article  ADS  Google Scholar 

  23. S. D. Bale, M. A. Balikhin, and T. S. Horbury, Space Sci. Rev. 118, 161 (2005).

    Article  ADS  Google Scholar 

  24. T. L. Totten, J.W. Freeman, and S. Arya, J. Geophys. Res. 100, 13 (1995).

    Article  ADS  Google Scholar 

  25. E. Priest, Solar Magnetohydrodynamics (Gordon and Breach, London, 1981; Mir, Moscow, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.V. Eselevich, V.G. Eselevich, 2011, published in Astronomicheskii Zhurnal, 2011, Vol. 88, No. 4, pp. 393–408

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eselevich, M.V., Eselevich, V.G. Relations estimated at shock discontinuities excited by coronal mass ejections. Astron. Rep. 55, 359–373 (2011). https://doi.org/10.1134/S1063772911020028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772911020028

Keywords

Navigation